What is Vaex?

Vaex is a python library for lazy Out-of-Core DataFrames (similar to Pandas), to visualize and explore big tabular datasets. It can calculate statistics such as mean, sum, count, standard deviation etc, on an N-dimensional grid up to a billion (\(10^9\)) objects/rows per second. Visualization is done using histograms, density plots and 3d volume rendering, allowing interactive exploration of big data. Vaex uses memory mapping, a zero memory copy policy, and lazy computations for best performance (no memory wasted).

Why vaex

  • Performance: works with huge tabular data, processes \(\gt 10^9\) rows/second

  • Lazy / Virtual columns: compute on the fly, without wasting ram

  • Memory efficient no memory copies when doing filtering/selections/subsets.

  • Visualization: directly supported, a one-liner is often enough.

  • User friendly API: you will only need to deal with the DataFrame object, and tab completion + docstring will help you out: ds.mean<tab>, feels very similar to Pandas.

  • Lean: separated into multiple packages

    • vaex-core: DataFrame and core algorithms, takes numpy arrays as input columns.

    • vaex-hdf5: Provides memory mapped numpy arrays to a DataFrame.

    • vaex-arrow: Arrow support for cross language data sharing.

    • vaex-viz: Visualization based on matplotlib.

    • vaex-jupyter: Interactive visualization based on Jupyter widgets / ipywidgets, bqplot, ipyvolume and ipyleaflet.

    • vaex-astro: Astronomy related transformations and FITS file support.

    • vaex-server: Provides a server to access a DataFrame remotely.

    • vaex-distributed: (Deprecated) Now part of vaex-enterprise.

    • vaex-qt: Program written using Qt GUI.

    • vaex: Meta package that installs all of the above.

    • vaex-ml: Machine learning

  • Jupyter integration: vaex-jupyter will give you interactive visualization and selection in the Jupyter notebook and Jupyter lab.

Installation

Using conda:

  • conda install -c conda-forge vaex

Using pip:

  • pip install --upgrade vaex

Or read the detailed instructions

Getting started

We assume that you have installed vaex, and are running a Jupyter notebook server. We start by importing vaex and asking it to give us an example dataset.

[1]:
import vaex
df = vaex.example()  # open the example dataset provided with vaex

Instead, you can download some larger datasets, or read in your csv file.

[2]:
df  # will pretty print the DataFrame
[2]:
# x y z vx vy vz E L Lz FeH
0 -0.7774707672.10626292 1.93743467 53.276722 288.386047 -95.2649078-121238.171875 831.0799560546875 -336.426513671875 -2.309227609164518
1 3.77427316 2.23387194 3.76209331 252.810791 -69.9498444-56.3121033-100819.91406251435.1839599609375-828.7567749023438 -1.788735491591229
2 1.3757627 -6.3283844 2.63250017 96.276474 226.440201 -34.7527161-100559.96093751039.2989501953125920.802490234375 -0.7618109022478798
3 -7.06737804 1.31737781 -6.10543537 204.968842 -205.679016-58.9777031-70174.8515625 2441.724853515625 1183.5899658203125 -1.5208778422936413
4 0.243441463 -0.822781682-0.206593871-311.742371-238.41217 186.824127 -144138.75 374.8164367675781 -314.5353088378906 -2.655341358427361
... ... ... ... ... ... ... ... ... ... ...
329,9953.76883793 4.66251659 -4.42904139 107.432999 -2.1377129617.5130272 -119687.3203125746.8833618164062 -508.96484375 -1.6499842518381402
329,9969.17409325 -8.87091351 -8.61707687 32.0 108.089264 179.060638 -68933.8046875 2395.633056640625 1275.490234375 -1.4336036247720836
329,997-1.14041007 -8.4957695 2.25749826 8.46711349 -38.2765236-127.541473-112580.359375 1182.436279296875 115.58557891845703 -1.9306227597361942
329,998-14.2985935 -5.51750422 -8.65472317 110.221558 -31.392559186.2726822 -74862.90625 1324.59265136718751057.017333984375 -1.225019818838568
329,99910.5450506 -8.86106777 -4.65835428 -2.10541415-27.61088563.80799961 -95361.765625 351.0955505371094 -309.81439208984375-2.5689636894079477

Using square brackets[], we can easily filter or get different views on the DataFrame.

[3]:
df_negative = df[df.x < 0]  # easily filter your DataFrame, without making a copy
df_negative[:5][['x', 'y']]  # take the first five rows, and only the 'x' and 'y' column (no memory copy!)
[3]:
# x y
0 -0.777471 2.10626
1 -7.06738 1.31738
2 -5.17174 7.82915
3-15.9539 5.77126
4-12.3995 13.9182

When dealing with huge datasets, say a billion rows (\(10^9\)), computations with the data can waste memory, up to 8 GB for a new column. Instead, vaex uses lazy computation, storing only a representation of the computation, and computations are done on the fly when needed. You can just use many of the numpy functions, as if it was a normal array.

[4]:
import numpy as np
# creates an expression (nothing is computed)
some_expression = df.x + df.z
some_expression  # for convenience, we print out some values
[4]:
<vaex.expression.Expression(expressions='(x + z)')> instance at 0x118f71550 values=[1.159963903, 7.53636647, 4.00826287, -13.17281341, 0.036847591999999985 ... (total 330000 values) ... -0.66020346, 0.5570163800000003, 1.1170881900000003, -22.95331667, 5.8866963199999995]

These expressions can be added to a DataFrame, creating what we call a virtual column. These virtual columns are similar to normal columns, except they do not waste memory.

[5]:
df['r'] = some_expression  # add a (virtual) column that will be computed on the fly
df.mean(df.x), df.mean(df.r)  # calculate statistics on normal and virtual columns
[5]:
(-0.06713149126400597, -0.0501732470530304)

One of the core features of vaex is its ability to calculate statistics on a regular (N-dimensional) grid. The dimensions of the grid are specified by the binby argument (analogous to SQL’s grouby), and the shape and limits.

[6]:
df.mean(df.r, binby=df.x, shape=32, limits=[-10, 10]) # create statistics on a regular grid (1d)
[6]:
array([-9.67777315, -8.99466731, -8.17042477, -7.57122871, -6.98273954,
       -6.28362848, -5.70005784, -5.14022306, -4.52820368, -3.96953423,
       -3.3362477 , -2.7801045 , -2.20162243, -1.57910621, -0.92856689,
       -0.35964342,  0.30367721,  0.85684123,  1.53564551,  2.1274488 ,
        2.69235585,  3.37746363,  4.04648274,  4.59580105,  5.20540601,
        5.73475069,  6.28384101,  6.67880226,  7.46059303,  8.13480148,
        8.90738265,  9.6117928 ])
[7]:
df.mean(df.r, binby=[df.x, df.y], shape=32, limits=[-10, 10]) # or 2d
df.count(df.r, binby=[df.x, df.y], shape=32, limits=[-10, 10]) # or 2d counts/histogram
[7]:
array([[22., 33., 37., ..., 58., 38., 45.],
       [37., 36., 47., ..., 52., 36., 53.],
       [34., 42., 47., ..., 59., 44., 56.],
       ...,
       [73., 73., 84., ..., 41., 40., 37.],
       [53., 58., 63., ..., 34., 35., 28.],
       [51., 32., 46., ..., 47., 33., 36.]])

These one and two dimensional grids can be visualized using any plotting library, such as matplotlib, but the setup can be tedious. For convenience we can use heatmap, or see the other visualization commands

[8]:
df.viz.heatmap(df.x, df.y, show=True);  # make a plot quickly
_images/index_19_0.png

Continue

Continue the tutorial here or check the guides.