{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Machine Learning: the Titanic dataset\n", "\n", "If you want to try out this notebook with a live Python kernel, use mybinder:\n", "\n", "\"https://mybinder.org/badge_logo.svg\"\n", "\n", "\n", "In the following is a more involved machine learning example, in which we will use a larger variety of methods in `veax` to do data cleaning, feature engineering, pre-processing and finally to train a couple of models. To do this, we will use the well known _Titanic dataset_. Our task is to predict which passengers are more likely to have survived the disaster. \n", "\n", "Before we begin, there are two important notes to consider:\n", " - The following example is not to provide a competitive score for any competitions that might use the _Titanic dataset_. It's primary goal is to show how various methods provided by `vaex` and `vaex.ml` can be used to clean data, create new features, and do general data manipulations in a machine learning context. \n", " - While the _Titanic dataset_ is rather small in side, all the methods and operations presented in the solution below will work on a dataset of arbitrary size, as long as the data fits on the hard-drive of your machine.\n", " \n", "Now, with that out of the way, let's get started!" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:37.005009Z", "start_time": "2020-05-01T17:12:35.667407Z" } }, "outputs": [], "source": [ "import vaex\n", "import vaex.ml\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Adjusting `matplotlib` parmeters\n", "\n", "_Intermezzo:_ we modify some of the `matplotlib` default settings, just to make the plots a bit more legible." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:37.014957Z", "start_time": "2020-05-01T17:12:37.007951Z" } }, "outputs": [], "source": [ "SMALL_SIZE = 12\n", "MEDIUM_SIZE = 14\n", "BIGGER_SIZE = 16\n", "\n", "plt.rc('font', size=SMALL_SIZE) # controls default text sizes\n", "plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title\n", "plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels\n", "plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels\n", "plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels\n", "plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize\n", "plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Get the data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First of all we need to read in the data. Since the _Titanic dataset_ is quite well known for trying out different classification algorithms, as well as commonly used as a teaching tool for aspiring data scientists, it ships (no pun intended) together with `vaex.ml`. So let's read it in, see the description of its contents, and get a preview of the data." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:37.069863Z", "start_time": "2020-05-01T17:12:37.017532Z" } }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "

titanic

rows: 1,309

Columns:

columntypeunitdescriptionexpression
pclassint64
survivedbool
namestr
sexstr
agefloat64
sibspint64
parchint64
ticketstr
farefloat64
cabinstr
embarkedstr
boatstr
bodyfloat64
home_deststr

Data:

\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
# pclass survived name sex age sibsp parch ticket fare cabin embarked boat body home_dest
0 1 True Allen, Miss. Elisabeth Walton female29.0 0 0 24160 211.3375B5 S 2 nan St Louis, MO
1 1 True Allison, Master. Hudson Trevor male 0.91671 2 113781 151.55 C22 C26S 11 nan Montreal, PQ / Chesterville, ON
2 1 False Allison, Miss. Helen Loraine female2.0 1 2 113781 151.55 C22 C26S -- nan Montreal, PQ / Chesterville, ON
3 1 False Allison, Mr. Hudson Joshua Creighton male 30.0 1 2 113781 151.55 C22 C26S -- 135.0 Montreal, PQ / Chesterville, ON
4 1 False Allison, Mrs. Hudson J C (Bessie Waldo Daniels)female25.0 1 2 113781 151.55 C22 C26S -- nan Montreal, PQ / Chesterville, ON
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1,3043 False Zabour, Miss. Hileni female14.5 1 0 2665 14.4542 -- C -- 328.0 --
1,3053 False Zabour, Miss. Thamine femalenan 1 0 2665 14.4542 -- C -- nan --
1,3063 False Zakarian, Mr. Mapriededer male 26.5 0 0 2656 7.225 -- C -- 304.0 --
1,3073 False Zakarian, Mr. Ortin male 27.0 0 0 2670 7.225 -- C -- nan --
1,3083 False Zimmerman, Mr. Leo male 29.0 0 0 315082 7.875 -- S -- nan --
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Load the titanic dataset\n", "df = vaex.datasets.titanic()\n", "\n", "# See the description\n", "df.info()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Shuffling\n", "From the preview of the DataFrame we notice that the data is sorted alphabetically by name and by passenger class.\n", "Thus we need to shuffle it before we split it into train and test sets." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:37.078118Z", "start_time": "2020-05-01T17:12:37.072165Z" } }, "outputs": [], "source": [ "# The dataset is ordered, so let's shuffle it\n", "df = df.shuffle(random_state=31)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Shuffling for large datasets\n", "As mentioned in [The Iris tutorial](ml_iris.ipynb), you are likely to get a better performance if you export to disk your shuffled dataset, especially when the dataset is larger in size:\n", "\n", "```\n", "df.shuffle().export(\"shuffled.hdf5\")\n", "df = vaex.open(\"shuffled.hdf5\")\n", "df_train, df_test = df.ml.train_test_split(test_size=0.2)\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Split into train and test\n", "Once the data is shuffled, let's split it into train and test sets. The test set will comprise 20% of the data. Note that we do not shuffle the data for you, since vaex cannot assume your data fits into memory, you are responsible for either writing it in shuffled order on disk, or shuffle it in memory (the previous step)." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:37.128176Z", "start_time": "2020-05-01T17:12:37.080094Z" } }, "outputs": [], "source": [ "# Train and test split, no shuffling occurs\n", "df_train, df_test = df.ml.train_test_split(test_size=0.2, verbose=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sanity checks\n", "\n", "Before we move on to process the data, let's verify that our train and test sets are \"similar\" enough. We will not be very rigorous here, but just look at basic statistics of some of the key features.\n", "\n", "For starters, let's check that the fraction of survivals is similar between the train and test sets." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:37.731294Z", "start_time": "2020-05-01T17:12:37.129879Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAEUCAYAAAAspncYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAw8UlEQVR4nO3deZhkZXn///eHGQRkGBEYMKCAuKEouIzBJaJGI1+3SIBvBFExiWL0i8tPElzRcSEKCkbFCLgBLgRRMCoaxQhuUZJxARwEBQRlUQeQgRkWWe7fH+e0FEV3z+mmuqt6+v26rrqmzvOc5a6emXr6PudZUlVIkiRJkqZuvWEHIEmSJElzlQmVJEmSJE2TCZUkSZIkTZMJlSRJkiRNkwmVJEmSJE2TCZUkSZIkTZMJleaMJF9Lsv+w4xgFSfZL8o2O+65I8pRpXueSJE+fzrEdz9/5c0iSZt9Mtb1JjkvyrkGft+f82yZZnWTBTF1DGmNCpRnVfpmNvW5PcmPP9n5TOVdVPbOqjp+pWPsl2T5JJVk4W9fsqqo+U1XP6LjvTlV15gyHtFbj/Tyn8jk6nH+zJKcmWZPk0iQvWMv+OyT5SpLrk1yV5PDpnkvS3DPI9qk935lJXjoDcb4kyfcGfd6uZrvtna7+G4BV9euqWlRVtw3g3ElyWJKr29fhSTLBvvv1/du6oW37HjPVc2nuGLlfFLVuqapFY++TXAK8tKq+2b9fkoVVdetsxjbK5uLPI8mCQTRcd8OHgT8CWwGPBE5LcnZVrejfMck9gNPbY54P3AY8eDrnkjQ3dW2f5qv2l/xU1e0jEMuw28QDgD2AXYCiaT8uBo7u37GqPgN8Zmw7yUuAQ4AfT/Vcmjt8QqWhSPKUJJcleX2S3wKfTHLv9onByiR/aN/ft+eYP939G7tjl+R97b6/SvLMSa73+iSXt08jLkjytLZ8vSRvSHJRe6foc0k2aw/7Tvvnte1dpsd3+Fx/nmR5kuuS/C7Jkb2ft2/fP91NS7IsyeeTfDrJdcCb2rulm/Xs/6j2Scr6vXcskxyd5H195/6PJK8b5zqTfV6SvKh9InN1kjev5bMel+QjSb6aZA3w1CTPTvKT9vP/JsmynkPu8vPsv/Oa5AlJ/jfJqvbPJ6ztZ94etzGwF3BIVa2uqu8BXwJeNMEhLwGuqKojq2pNVd1UVedM81yS1iGTfU8m2bD9nr46ybXt99RWSQ4FngQc1X6/HTXOecc9tq27V5KPJ7mybavelWRBkofS/KL9+Pa813b8DC9JcnHb5v0q7RO3tq35dM9+d+o50Lazhyb5PnADsMNY25tkgzbuh/ccv6Rtq7Zst5+T5Kftfv+dZOeefR+V5MdtTCcBG64l/u8neX+Sa4BlSR6Q5Fvtz++qJJ9Jsmm7/6eAbYEvtz+ng8f5bFsn+VKSa5JcmORlXX6Wrf2BI6rqsqq6HDiCph3peuwJVVUDOJdGlAmVhuk+wGbAdjR3bNYDPtlubwvcCNylUeqxK3ABsAVwOPDx5K6PzZM8BDgQeGxVbQLsDlzSVr+a5k7Rk4GtgT/QPJ0A2K39c9O228AP0vTJvjbJthPE9AHgA1W1GHgA8LnJfgB9ngd8HtgUeC/wA5pf7Me8APh8Vd3Sd9xngeePffYk9waeAfz7ONeY8PMmeRjwEZrEYWtgc+C+45yj1wuAQ4FNgO8Ba4AXt5/h2cArkuzR7nuXn2fvidpfWE4DPthe+0iaJ0Obt/VvSPKVCeJ4MHBbVf2ip+xsYKcJ9n8ccEmasQFXtb8wPGKa55K0bpmsXdgfuBdwP5rvqX8EbqyqNwPfBQ5sv98OHOe84x7b1h0P3Ao8EHgUzXf4S6vq5+1+P2jPuylAkhckOWe84NubQh8Entm2eU8AfjqFz/8imjZ5E+DSscKquhk4Bdi3Z9+/Bb5dVb9P8mjgE8DL2893DPClNhG7B/BF4FM07f7J3Ll9G8+uNE9utqRpZwK8m+bv5KE0P8dlbWwvAn4NPLf9OR0+zvlOBC5rj98b+JfccXP1L9aSrO5E0w6M6dQmJNmOpu074e6eS6PNhErDdDvwtqq6uapurKqrq+oLVXVDVV1P8wX65EmOv7SqPtp2Mzse+DOaLlr9bgM2AB6WZP2quqSqLmrrXg68ub1TdDPNl/PemWDcVNsne9Oq+vUEMd0CPDDJFu3TjR+u5WfQ6wdV9cWqur2qbqRJlPaFP3W92Kct6/ddmm4DT2q3927PdcU4+072efcGvlJV32nrDqH5O5rMf1TV99uYb6qqM6vq3Hb7HJoGbLK/w17PBn5ZVZ+qqlur6kTgfOC5AFX1nqp6zgTHLgJW9ZWtovmFYDz3pfl5fpCmcT0N+I+20Z/quSStWyb7nryFJll4YFXdVlU/qqrrOp533GPbp1TPBF7bPjH/PfB+mu+ocVXVZ6tq54nqab67H55ko6q6cordlY+rqhXt9/B4N/B6E6oXcEe79DLgmKo6q/18xwM309zAehywPvCvVXVLVX0e+N+1xHFFVX2ojePGqrqwqk5vf2dYSXPTrVP7kuR+wF8Ar2/bqp8CH6PteVBV3xtLVifQ3y6sAhaNdxO3z4uB71bVrwZwLo0wEyoN08qqumlsI8k9kxyTpsvZdTRdxDbNxDP0/HbsTVXd0L5d1L9TVV0IvJamUfx9kn9PsnVbvR1wavvU6Vrg5zQJ2HiJWRf/QPOE4/y2O8dECcB4ftO3/Xmabh5b09zhKprk6U7abgT/zh2N3Avo6b/dZ7LPu3VvDFW1Brh6KjEn2TXJGWm6ba6iubO6xVrOMWZreu6Gti4Ftulw7GpgcV/ZYuD6Cfa/EfheVX2tqv4IvI/mF52HTuNcktYtk31Pfgr4OvDvSa5IM6HA+h3PO9Gx29EkG1f2XPMYmiczU9Z+dz+f5vv3yiSnJdlxCqfob4t6fQvYqP2u345mjOmpbd12wEFjn6H9HPej+W7fGri8p9sb3PX7ftI4kmzZtt+Xt78jfJqptS/XtDdre6/fpX2Bu7YLi4HVfZ9nPC+mueE7iHNphJlQaZj6vzwOAh4C7Np2mRvrIna379q0d/P+guYLv4DD2qrf0HSL2LTntWHbr3nKX25V9cuq2pemITwM+Hzb/WINcM+x/dokcUn/4X3nuhb4Bk2XihcAJ07yhXsizR3U7Wi6SXxhgv0m+7xX0jR+YzHekybJmPQj921/lma80f2q6l40ff8zwb79rqD5++m1LXD5Wo4D+AWwMMmDesp2ASa6K3vOJPFM9VyS1i0Tfk+2T1feXlUPo+lK9xyaX5phLd9xkxz7G5onOVv0XG9xVY11A5tOW/T1qvormp4b5wMfbavu1BbRdL2/y+GTnPd2mq7s+9K0S1/pSVJ+Axza93O7Z9vb4Epgm76nMBN1nZ8ojne3ZTu3vyO8kDv/fjDZz+kKYLMkvT0NurYv0Hz/79KzvdY2IckTaRK5z9/dc2n0mVBplGxC8+Tg2nY8zdsGcdIkD0nyl0k2AG5qrzE2G93RwKFtIjI2wPZ5bd1Kmm4TO0zhWi9MsqRtdK5ti2+j+SV9wzSTNqwPvIWmG+LafJamwd2L8bv7AVBVP2nj/Rjw9TYZG89kn/fzwHPavuT3AN7B1L8jNqG5C3hTkj+naXDHrO3n+VXgwe3YgIVJng88DJho3NSftHdkTwHekWTjtiF7Hs0d4fF8Gnhckqe3ye1rgauAn0/jXJLWLRN+TyZ5apJHtN8b19F04xtrT37HJO3FRMdW1ZU0N8+OSLI4zaQYD0gy1p3td8B92+/ltUozScZftzfzbqZ5IjIW40+B3dKMB74X8MZuP5I7+SzNE7D9uHO79FHgH9unV2m/P5/dJjE/oBkj9ur2+31P4M+neN1N2s9ybZJtgH/uq5/w519VvwH+G3h3mslBdqbpUTJRb45+JwCvS7JN22vkIOC4tRyzP/CFvqdi0z2XRpwJlUbJvwIb0fxi+0PgPwd03g2A97Tn/S3N06M3tXUfoHmi8o0k17fX3RX+1I3wUOD7bfeFx+WOhQInurP2f4AVSVa3596n7a+9CnglTcJzOc1dwssmOEevLwEPAn5XVWevZd8TgaczSeK1ls+7Avh/7fFX0gzE7hJjr1fSJCLXA2+lZ1KO8X6evQdW1dU0d2wPoulqeDDwnKq6CiDJm5J8bS3X3gj4Pc3P4hVj4wb6/96q6gKau5tHt5/zecBft93/Jj2XpHXehN+TNE90Pk+TEP0c+DbNDZqx4/ZOM/PsB8c572THvhi4B3AezXfS52meLkHTzW4F8NskY9+H+yWZ6DtpPZrv0SuAa2jGGb0SoKpOB06ieUr/IzrcsOpXVWfRtGFbA1/rKV9OM47qqPYzXEg7e1373bpnu/0HmoTslCle+u3Ao2nGHJ02zvHvBt7Sti//NM7x+wLb0/xcTqUZw306QJInte32RI4BvgycC/ysvf4xY5VJVqRn7bIkG9L0Lhlv/a5Jz6W5KXbZlCRJkqTp8QmVJEmSJE2TCZUkSZIkTZMJlSRJkiRNkwmVJEmSJE2TCZUkSZIkTdPCYQcwk7bYYovafvvthx2GJGlAfvSjH11VVf2LYo8k2yBJWndM1v6s0wnV9ttvz/Lly4cdhiRpQJJcOuwYurINkqR1x2Ttj13+JEmSJGmaTKgkSZIkaZpMqCRJkiRpmkyoJEmSJGmaTKgkSZIkaZpMqCRJkiRpmkyoJEmSJGmaTKgkSZIkaZrW6YV957Lt33DasEOYdy55z7OHHYIkDZ3tz3DYBklzl0+oJEnrvCQHJlme5OYkx/WUb5+kkqzueR3SU58khyW5un0dniRD+RCSpJHkEypJ0nxwBfAuYHdgo3HqN62qW8cpPwDYA9gFKOB04GLg6JkJU5I01/iESpK0zquqU6rqi8DVUzx0f+CIqrqsqi4HjgBeMuDwJElzmAmVJElwaZLLknwyyRY95TsBZ/dsn92WSZIEmFBJkua3q4DHAtsBjwE2AT7TU78IWNWzvQpYNNE4qiQHtGO1lq9cuXKGQpYkjRITKknSvFVVq6tqeVXdWlW/Aw4EnpFkcbvLamBxzyGLgdVVVROc79iqWlpVS5csWTKzwUuSRoIJlSRJdxhLlMaeQK2gmZBizC5tmSRJgAmVJGkeSLIwyYbAAmBBkg3bsl2TPCTJekk2Bz4InFlVY938TgBel2SbJFsDBwHHDeVDSJJGkgmVJGk+eAtwI/AG4IXt+7cAOwD/CVwP/Ay4Gdi357hjgC8D57b1p7VlkiQBrkMlSZoHqmoZsGyC6hMnOa6Ag9uXJEl34RMqSZIkSZomEypJkiRJmqZZT6iS7JPk50nWJLkoyZPa8qclOT/JDUnOSLJdzzFJcliSq9vX4ROtASJJkiRJs2VWE6okfwUcBvwdzeKJuwEXt6vSnwIcAmwGLAdO6jn0AGAPmulqdwaeA7x81gKXJEmSpHHM9hOqtwPvqKofVtXtVXV5VV0O7AmsqKqTq+ommoHDuyTZsT1uf+CIqrqs3f8I4CWzHLskSZIk3UmnhCrJkiRLerYfkeRdSfad7Li+cywAlgJLklyY5LIkRyXZCNgJOHts36paA1zUltNf377fiXEkOSDJ8iTLV65c2TU8SZIkSZqyrk+oPgc8F6Dtnvcd4G+Ao5Mc1PEcWwHrA3sDTwIeCTyKZh2QRcCqvv1X0XQLZJz6VcCi8cZRVdWxVbW0qpYuWbKkv1qSJEmSBqZrQrUz8MP2/d7AhVW1E/Biuo9lurH980NVdWVVXQUcCTwLWA0s7tt/Mc1Ci4xTvxhY3a4PIkmSJElD0TWh2ogmqQF4OvCl9v2Pgft1OUFV/QG4DBgvCVpBM+EEAEk2Bh7Qlt+lvn2/AkmSJEkaoq4J1S+BPZPcD3gG8I22fCvg2ilc75PAq5JsmeTewGuBrwCnAg9PsleSDYG3AudU1fntcScAr0uyTZKtgYOA46ZwXUmSJEkauK4J1dtppju/BPhhVZ3Vlu8O/GQK13sn8L/AL4Cft8ceWlUrgb2AQ4E/ALsC+/QcdwzwZeBc4GfAaW2ZJEmSJA3Nwi47VdUpSbYFtubOs+19E/hC14tV1S3AK9tXf903gR3vclBTV8DB7UuSJEmSRsJan1AlWT/Jb4EtquonVXX7WF1VndXTLU+SJEmS5pW1JlTtU6VbGH8yCUmSJEmat7qOofoQ8MYknboISpIkSdJ80DVBehLwZODyJD8D1vRWVtVfDzowSZIkSRp1XROqq5jC5BOSJEmSNB90neXv72Y6EEmSJEmaa7qOoQIgydIkz0+ycbu9seOqJEmSJM1XnZKhJFsBXwIeSzPb34OAi4EjgZuA18xUgJIkSZI0qro+oXo/8Ftgc+CGnvKTgWcMOihJkiRJmgu6dtd7GvC0qvpDkt7yi4BtBx6VJEmSJM0BXZ9QbQT8cZzyJTRd/iRJkiRp3umaUH0HeEnPdiVZALwe+K9BByVJ0iAlOTDJ8iQ3Jzmup/xxSU5Pck2SlUlOTvJnPfXLktySZHXPa4ehfAhJ0kjqmlAdDLwsyenABsARwHnAE4E3zlBskiQNyhXAu4BP9JXfGzgW2B7YDrge+GTfPidV1aKe18UzHawkae7oug7VeUkeAbwCuBnYkGZCig9X1ZUzGJ8kSXdbVZ0CzfIfwH17yr/Wu1+So4Bvz250kqS5rPMaUlX1W+BtMxiLJEnDthuwoq/suUmuAa4Ejqqqj0x0cJIDgAMAtt3WOZskaT7oug7VbhNUFc2kFBdV1TUDi0qSpFmWZGfgrcDzeoo/R9Ml8HfArsAXklxbVSeOd46qOrbdn6VLl9bMRixJGgVdn1CdSZM8AYzNm967fXuSLwEvqqo1gwtPkqSZl+SBwNeA11TVd8fKq+q8nt3+O8kHgL2BcRMqSdL803VSimcDPwdeCDywfb2QplvEXu3rkcB7Bh+iJEkzJ8l2wDeBd1bVp9aye3HHjUVJkjo/oXoXzV273inSL06yEjisqh6T5DbgQ8CrBh2kJEl3R5KFNG3eAmBBkg2BW4GtgG/RTLJ09DjHPY9m6ZBrgccCrwbeNEthS5LmgK4J1cOAy8cpv7ytAzgXuM8ggpIkacDewp0nVnoh8HaaJ047AG9L8qf6qlrUvt2HZqr1DYDLaG4iHj8rEUuS5oSuXf7OA96cZIOxgvb9m9o6gPsBv53sJEnOTHJTz+KIF/TUPS3J+UluSHJG2wVjrC5JDktydfs6PIldLiRJnVTVsqpK32tZVb29fd+7ztSinuP2rarN2/Idq+qDw/wckqTR0zWheiWwO3B5mxSdQfN0aneatamgucP3bx3OdWBPo/UQgCRbAKcAhwCbAcuBk3qOOQDYA9gF2Bl4DvDyjrFLkiRJ0ozourDvWUnuT9NF4iE0A3JPBD4zNqtfVZ1wN+LYE1hRVScDJFkGXJVkx6o6H9gfOKKqLmvrjwBeBtylv7skSZIkzZapLOy7BjhmANd8d5L3ABcAb66qM4GdgLN7r5Xkorb8/P769v1OA4hFkiRJkqatc0KV5H7Ak4At6esqWFVHdjzN62nGXP2RZqDvl5M8ElgErOzbdxWwSft+UbvdW7coSarqTgsnukq9JEmSpNnSKaFKsh/NLEe30iQ+vUlMAZ0Sqqo6q2fz+CT7As8CVgOL+3ZfDFzfvu+vXwys7k+m2mu4Sr0kSZKkWdF1Uop3AEcAi6tq+6q6f89rh7tx/bEFElfQTDgBQJKNgQe05fTXt+9XIEmSJElD1DWh2gr4WFXdNt0LJdk0ye5JNkyysH3qtRvwdeBU4OFJ9moXW3wrcE47IQXACcDrkmyTZGvgIOC46cYiSZIkSYPQdQzVV4FdgYvvxrXWB94F7AjcRjPZxB5VdQFAkr2Ao4BPA2fRjLEacwzNtOznttsfYzATZEiSJEnStHVNqE4HDkuyE01Sc0tvZVWdsrYTVNVK4LGT1H+TJtkar66Ag9uXJEmSJI2ErgnV2NOgN41TV8CCwYQjSZIkSXNH14V9u461kiRJkqR5w0RJkiRJkqapU0KVxiuTrEhyQ5Id2vI3JPnbmQ1RkiRJkkZT1ydUrwHeQrNgbnrKLwcOHHRQkiRJkjQXdE2o/hF4WVV9ALi1p/zHwE4Dj0qSJEmS5oCus/xtB/xsnPJbgI0GF44kSZI087Z/w2nDDmFeuuQ9zx52CAPX9QnVxcCjxyl/FnDe4MKRJEmSpLmj6xOq9wFHJbknzRiqxyd5Ec1Cu38/U8FJkiRJ0ijrug7VJ5MsBP4FuCfwKZoJKV5dVSfNYHySJEmSNLK6PqGiqj4KfDTJFsB6VfX7mQtLkiRJkkZf13Wo1kuyHkBVXQWsl+SlSZ4wo9FJkiRJ0gjrOinFacCrAJIsApYD7wW+neTFMxSbJEmSJI20rgnVY4Bvte/3BK4DtgReBvzTDMQlSdLAJDkwyfIkNyc5rq/uaUnOT3JDkjOSbNdTlySHJbm6fR2eJHe5gCRp3uqaUG0CXNu+fwZwalXdQpNkPWAG4pIkaZCuAN4FfKK3sB0XfApwCLAZTQ+M3smWDgD2AHYBdgaeA7x85sOVJM0VXROqXwNPTLIxsDtwelu+GXDDTAQmSdKgVNUpVfVF4Oq+qj2BFVV1clXdBCwDdkmyY1u/P3BEVV1WVZcDRwAvmZ2oJUlzQdeE6kiaqdIvo5ku/Ttt+W7AuTMQlyRJs2En4OyxjapaA1zUlt+lvn2/ExNIckDbtXD5ypUrZyBcSdKo6ZRQVdUxwONpFvH9i6q6va26iKabhCRJc9EiYFVf2Sqaru7j1a8CFk00jqqqjq2qpVW1dMmSJQMPVpI0eqayDtVymr7lACRZv6pOm5GoJEmaHauBxX1li4HrJ6hfDKyuqpqF2CRJc0DXdahenWSvnu2PAzcmuSDJQ2YsOkmSZtYKmgknAGjHCj+gLb9Lfft+BZIktbqOoXo1sBIgyW7A3wIvAH5KM0BXkqSRlWRhkg2BBcCCJBsmWQicCjw8yV5t/VuBc6rq/PbQE4DXJdkmydbAQcBxQ/gIkqQR1TWh2ga4pH3/XODkqvoczWxIj5vqRZM8KMlNST7dU+Y6IJKkmfIW4EbgDcAL2/dvqaqVwF7AocAfgF2BfXqOOwb4Ms0ETD+jWej+mNkLW5I06romVNcBY6Nr/wr4r/b9LcCG07juh4H/HdtwHRBJ0kyqqmVVlb7Xsrbum1W1Y1VtVFVPqapLeo6rqjq4qjZrXwc7fkqS1KtrQvUN4KPt2KkHAl9ry3cCfjWVCybZh2aR4P/qKXYdEEmSJElzTteE6v8B3we2APauqmva8kcDJ3a9WJLFwDto+qD3Gtg6IK4BIkmSJGm2dJo2vaquA141Tvnbpni9dwIfr6rf9A2BWkQ76UWPTuuA9He9qKpjgWMBli5darcMSZIkSTOm8zpUY5LcB7hHb1lV/brDcY8Eng48apxq1wGRJEmSNOd0SqiS3Av4IM106fcYZ5cFHU7zFGB74Nft06lFNFPXPgw4mmac1Nj1JloH5H/abdcBkdYR27/B9cFn2yXvefawQ5AkaZ3RdQzV+2iSmD2Am2jWoPpn4DLg+R3PcSxNkvTI9nU0zfSzu+M6IJIkSZLmoK5d/p4J7FtV301yG/CjqjopyZU005d/fm0nqKobgBvGtpOsBm5q1wAhyV7AUcCngbO46zogO9CsAwLwMVwHRJIkSdKQdU2oNgUubd+vAjYHLgR+QJPcTNnY+h89298Edpxg3wIObl+SJEmSNBK6dvm7iOYJEcDPgX3SDITaE7hmwqMkSZIkaR3WNaE6Dti5ff8emm5+fwTeCxw2+LAkSZIkafR1XYfq/T3vv5XkocBjgF9W1bkTHylJkiRJ664pr0MFUFWXcseYKkmSJEmal7p2+SPJHkm+k+Sq9vXdJH8zk8FJkiRJ0ijrlFAlOQg4CbiAO2bbOx/4bJJ/mrnwJEmSJGl0de3y90/AgVX10Z6yTyT5H+AdNAv/SpIkSdK80rXL3yLgjHHKz2jrJEmSJGne6ZpQfRHYe5zyvYAvDSwaSZIkSZpDunb5uxB4Q5KnAj9oyx7Xvo5M8rqxHavqyMGGKEmSJEmjqWtC9RLgD8CD29eYPwB/17NdgAmVJEmSpHmh68K+95/pQCRJkiRprum8DpUkSZIk6c5MqCRJkiRpmkyoJEnzWpLVfa/bknyords+SfXVHzLsmCVJo6PrpBSSJK2TqupP6ykm2Rj4HXBy326bVtWtsxqYJGlOmPAJVZJPJNmkfb9bEpMvSdK6bm/g98B3hx2IJGlumKzL3wuBjdv3ZwCbzXw4kiQN1f7ACVVVfeWXJrksySeTbDGMwCRJo2myp06XAK9K8g0gwOOT/GG8HavqOzMQmyRJsybJtsCTgX/oKb4KeCzwU2Bz4MPAZ4DdJzjHAcABANtuu+0MRitJGhWTJVT/DHwUeCPNgr2nTrBfAQsGHJckSbPtxcD3qupXYwVVtRpY3m7+LsmBwJVJFlfVdf0nqKpjgWMBli5d2v+US5K0Dpqwy19V/UdVbUnT1S/ATsCScV5bdr1Ykk8nuTLJdUl+keSlPXVPS3J+khuSnJFku566JDksydXt6/AkmfKnlSRpYi8Gjl/LPmNJkm2QJAnoMMtfVV2b5KnALwcww9G7gX+oqpuT7AicmeQnwKXAKcBLgS8D7wROAh7XHncAsAewC01jdjpwMXD03YxHkiSSPAHYhr7Z/ZLsClwL/BK4N/BB4MyqWjXbMUqSRlOnmfuq6ttJNkjyYuBhNEnNecBnq+rmrherqhW9m+3rAcBjgBVVdTJAkmXAVUl2rKrzaQYJH1FVl7X1RwAvw4RKkjQY+wOnVNX1feU7AP9C0xvjOpobevvOcmySpBHWaWHfJA8DfgEcCexK8+To/cAvkjx0KhdM8m9JbgDOB64EvkrTnfDssX2qag1wUVtOf337fifGkeSAJMuTLF+5cuVUQpMkzVNV9fKqetE45SdW1f2rauOq+rOqenFV/XYYMUqSRlOnhAr4AM0MR9tW1ZOq6knAtjSJzb9O5YJV9UpgE+BJNN38bgYWAf3dJ1a1+zFO/Spg0XjjqKrq2KpaWlVLlyxZMpXQJEmSJGlKui7W+0Tgsb0zGlXVdUneDPxwqhetqtuA7yV5IfAKYDWwuG+3xcBY14v++sXA6nHWCZEkSZKkWdP1CdVNwKbjlN+rrZuuhTRjqFbQTDgBQJKNe8rpr2/f947HkiRJkqRZ1zWh+jLw0SRPTLKgff0FcAzwpS4nSLJlkn2SLGqP351mYO+3aNa4eniSvZJsCLwVOKedkALgBOB1SbZJsjVwEHBc508pSZIkSTOga5e/19CszfFd4La2bD2aZOq1Hc9RNN37jm6PvRR4bVX9B0CSvYCjgE8DZwH79Bx7DM1MS+e22x9ryyRJkiRpaLpOm34t8LwkDwQeSrOg4XlVdWHXC1XVSuDJk9R/E9hxgroCDm5fkiRJkjQSuj6hAqBNoDonUZIkSZK0Lus6hkqSJEmS1MeESpIkSZKmyYRKkiRJkqZprQlVkoVJXtlOVy5JkiRJaq01oaqqW4H3AuvPfDiSJEmSNHd07fL3Q+DRMxmIJEmSJM01XadN/yhwRJLtgB8Ba3orq+rHgw5MkiRJkkZd14Tqs+2fR45TV8CCwYQjSZIkSXNH14Tq/jMahSRJkiTNQZ0Sqqq6dKYDkSRJkqS5pvM6VEmemeQrSc5Lcr+27KVJnjZz4UmSJEnS6OqUUCXZD/gc8Eua7n9jU6gvAA6emdAkSZIkabR1fUJ1MPCyqvr/gFt7yn8IPHLQQUmSJEnSXNA1oXoQ8INxylcDiwcXjiRJkiTNHV0TqiuAB49Tvhtw0eDCkSRJkqS5o2tCdSzwwSRPbLfvl2R/4HDgIzMSmSRJsyTJmUluSrK6fV3QU/e0JOcnuSHJGe0i95IkAR0Tqqo6HDgFOB3YGDgDOBo4uqo+PHPhSZI0aw6sqkXt6yEASbagaf8OATYDlgMnDTFGSdKI6bqwL1X15iSHAg+jScTOq6rVMxaZJEnDtyewoqpOBkiyDLgqyY5Vdf5QI5MkjYTO61C1CrgJuAG4bfDhSJI0NO9OclWS7yd5Slu2E3D22A5VtYZm7PBOsx+eJGkUdV2HaoMk/wpcQ9OwnANck+QDSTacwjk+nuTSJNcn+UmSZ/bUT9hHPY3Dklzdvg5Pkil9UkmSJvZ6YAdgG5pxw19O8gBgEbCqb99VwCbjnSTJAUmWJ1m+cuXKmYxXkjQiuj6h+giwN/BSminUH9i+/xvg3zqeYyHwG+DJwL1o+qN/Lsn2HfqoHwDsAewC7Aw8B3h5x+tKkjSpqjqrqq6vqpur6njg+8CzGH95kMXA9ROc59iqWlpVS5csWTKzQUuSRkLXMVT/F9izqk7vKbs4ye+BLwB/v7YTtN0klvUUfSXJr4DHAJszeR/1/YEjquqytv4I4GU0E2NIkjRoBQRYQdMGAZBkY+ABbbkkSZ2fUK0BLh+n/HLgxulcOMlWNGtbrWDtfdTvVN++t/+6JOluS7Jpkt2TbJhkYZL9aNZZ/DpwKvDwJHu1XdzfCpzjhBSSpDFdE6oPAW9LstFYQfv+kLZuSpKsD3wGOL5tlNbWR72/fhWwaLxxVPZflyRN0frAu4CVwFXAq4A9quqCqloJ7AUcCvwB2BXYZ1iBSpJGz4Rd/pJ8qa/oKcDlSc5ptx/RHr/xVC6YZD3gU8AfgQPb4rX1Ue+vXwysrqrqP39VHUszoJilS5fepV6SpF5t0vTYSeq/Cew4exFJkuaSycZQXd23/YW+7V9N9WLtE6WPA1sBz6qqW9qqtfVRX0EzIcX/tNu7YP91SZIkSUM2YUJVVX83A9f7CPBQ4OlV1Tv26lTgvUn2Ak7jrn3UTwBel+SrNAOFD2IaXQ0lSZIkaZCmurDvtLXrSr0ceCTw2ySr29d+HfqoHwN8GTgX+BlN0nXMbMUuSZIkSePpNG16knvTTHn+VGBL+hKxqtpybeeoqktppqCdqH7CPurtWKmD25ckSZIkjYSu61CdQDNN+fHA72i63UmSJEnSvNY1oXoK8OSq+vEMxiJJkiRJc0rXMVQXTWFfSZIkSZoXuiZJrwHenWSXJAtmMiBJkiRJmiu6dvm7ENgI+DFAs5zUHarKJEuSJEnSvNM1oToRuBfwapyUQpIkSZKA7gnVUuDPq+pnMxmMJEmSJM0lXcdQnQcsnslAJEmSJGmu6ZpQvQU4MsnTk2yVZLPe10wGKEmSJEmjqmuXv6+2f36DO4+fSrvtpBSSJEmS5p2uCdVTZzQKSZIkSZqDOiVUVfXtmQ5EkiRJkuaaTglVkkdPVl9VPx5MOJIkSZI0d3Tt8recZqxU74q+vWOpHEMlSZIkad7pmlDdv297feBRwJuBNw40IkmSJEmaI7qOobp0nOILk6wC3gZ8baBRSZIkSdIc0HUdqon8CnjkAOKQJEmSpDmn66QU/Yv3BvgzYBlwwYBjkiRJkqQ5oesYqqu48yQU0CRVvwGeP9CIJEmSJGmOmO7CvrcDK4ELq+rWwYYkSdLsSbIB8G/A04HNgAuBN1XV15JsT9O9fU3PIYdV1TtnPVBJ0khyYV9J0ny3kKbHxZOBXwPPAj6X5BE9+2zqDURJ0ngmnZQiyWZdXl0vluTAJMuT3JzkuL66pyU5P8kNSc5Isl1PXZIcluTq9nV4ktzlApIkTVFVramqZVV1SVXdXlVfoXkq9ZhhxyZJGn1rm+XvKpqufZO9fj+F610BvAv4RG9hki2AU4BDaLpbLAdO6tnlAGAPYBdgZ+A5wMuncF1JkjpJshXwYGBFT/GlSS5L8sm2zZro2APaG4fLV65cOeOxSpKGb21d/vrHTvX6P8BrgM5dIKrqFIAkS4H79lTtCayoqpPb+mXAVUl2rKrzgf2BI6rqsrb+COBlwNFdry1J0tokWR/4DHB8VZ2fZBHwWOCnwObAh9v63cc7vqqOBY4FWLp0af9kTpKkddCkCdV4Y6eSPBo4DNgNOAYYxMDcnYCze667JslFbfn5/fXt+53GO1GSA2ieaLHtttsOIDRJ0nyQZD3gU8AfgQMBqmo1Ta8JgN8lORC4MsniqrpuOJFKkkZJ54V9k9w/yWeBs4BrgIdV1aurahB9GhYBq/rKVgGbTFC/Clg03jiqqjq2qpZW1dIlS5YMIDRJ0rqubU8+DmwF7FVVt0yw69hTJ8fxSpKADglVks2TfIDmSdF9gMdX1fOr6qIBxrEaWNxXthi4foL6xcDqqrI7hSRpED4CPBR4blXdOFaYZNckD0myXpLNgQ8CZ1ZV/01ASdI8tbZZ/t4EXEQzlezzquovq2r5ZMdM0wqaCSfGrrsx8ADuGBB8p/r2fe9gYUmSpqWdVfblwCOB3yZZ3b72A3YA/pPmBt/PgJuBfYcVqyRp9KxtUop3ATcClwGvTPLK8Xaqqr/ucrEkC9trLgAWJNmQZlKLU4H3JtkLOA14K3BOOyEFwAnA65J8laa7xUHAh7pcU5KkyVTVpUzehe/E2YpFkjT3rC2hOoE7+osPwluAt/VsvxB4e1Uta5Opo4BP04zT2qdnv2No7hKe225/rC2TJEmSpKFZ2yx/LxnkxapqGbBsgrpvAjtOUFfAwe1LkiRJkkZC51n+JEmSJEl3ZkIlSZIkSdNkQiVJkiRJ02RCJUmSJEnTZEIlSZIkSdNkQiVJkiRJ02RCJUmSJEnTZEIlSZIkSdNkQiVJkiRJ02RCJUmSJEnTZEIlSZIkSdNkQiVJkiRJ02RCJUmSJEnTZEIlSZIkSdNkQiVJkiRJ02RCJUmSJEnTZEIlSZIkSdNkQiVJkiRJ02RCJUmSJEnTZEIlSZIkSdM0ZxKqJJslOTXJmiSXJnnBsGOSJM0PtkGSpIksHHYAU/Bh4I/AVsAjgdOSnF1VK4YalSRpPrANkiSNa048oUqyMbAXcEhVra6q7wFfAl403MgkSes62yBJ0mTmREIFPBi4rap+0VN2NrDTkOKRJM0ftkGSpAnNlS5/i4BVfWWrgE36d0xyAHBAu7k6yQUzHJvubAvgqmEHMR05bNgRaI7x3/pwbDeEa9oGzR3+v9R84b/12Tdh+zNXEqrVwOK+ssXA9f07VtWxwLGzEZTuKsnyqlo67Dikmea/9XnFNmiO8P+l5gv/rY+WudLl7xfAwiQP6inbBXAwsCRpptkGSZImNCcSqqpaA5wCvCPJxkmeCDwP+NRwI5MkretsgyRJk5kTCVXrlcBGwO+BE4FXOF3tSLKri+YL/63PL7ZBc4P/LzVf+G99hKSqhh2DJEmSJM1Jc+kJlSRJkiSNFBMqSZIkSZomEypJkiRJmiYTKknqIMkGSQ5NcnGSVW3ZM5IcOOzYJEnrLtuf0WdCpYFI8tAkhyT5cLu9Y5Kdhx2XNEDvBx4O7AeMzeazAnjF0CKSBNgGaZ1n+zPiTKh0tyX5v8C3gW2AF7XFi4AjhxaUNHh/A7ygqn4A3A5QVZfT/LuXNCS2QZoHbH9GnAmVBuEdwDOq6h+B29qys4FdhheSNHB/BBb2FiRZAlw9nHAktWyDtK6z/RlxJlQahC1pGi+441F09byX1gUnA8cnuT9Akj8DjgL+fahRSbIN0rrO9mfEmVBpEH7EHd0sxuwD/M8QYpFmypuAS4BzgU2BXwJXAG8fXkiSsA3Sus/2Z8Slyhs4unuS7Ah8A/gV8DjgTODBNF0wfjnE0KQZ0Xa1uKr8ApWGzjZI84ntz2gyodJAJLkn8BxgO+A3wFeqavVwo5IGJ8kOE9VV1cWzGYukO7MN0rrM9mf0mVBp4Nr/+LdV1aXDjkUalCS304zJSE9xAVTVgqEEJekubIO0rrH9GX2OodLdluTEJE9o3/8dzdoI5yX5h+FGJg1OVa1XVQvaP9cDtgaO5a5jNyTNItsgretsf0afT6h0tyX5PXDfqvpjknOBfwSuBb5YVQ8aanDSDEqyAfCLqtpu2LFI85VtkOYj25/RsnDtu0hrdY+2IdsG2Kyqvg+QZKshxyXNtIcA9xx2ENI8Zxuk+cj2Z4SYUGkQfprkjTSDgU8DaBu264YalTRASb7Lnde1uSewE82iopKGxzZI6zTbn9FnQqVB+AfgncAtwD+3ZY8HPjO0iKTB+1jf9hrgbKdllobONkjrOtufEecYKklaiyQLgE8AB1TVzcOOR5I0P9j+zA0mVJqWJH/fZb+q+sRMxyLNhiRXAttW1S3DjkWa72yDNJ/Y/ow+EypNS5IzOuxWVfWXMx6MNAuSHAxsCrzNRk0aLtsgzSe2P6PPhEqSJpFk36o6MclvgPsAtwEr6RkgXFXbDis+SdK6yfZn7jCh0kAlCT0reVfV7UMMR7rbklxXVYuTPHmifarq27MZk6Tx2QZpXWL7M3eYUOlua6enPQrYjeaR9J9U1YJhxCQNSpLrq2qTYcchaXy2QVpX2f7MHU6brkE4GrgBeBrwbZpGbRnw1SHGJA3KgiRPpeeud7+q+tYsxiPpzmyDtK6y/ZkjfEKluy3J1TSzz6xJcm1VbZpkM+C/q2rHYccn3R1JbgMuZeIGrapqh1kMSVIP2yCtq2x/5g6fUGkQbgNubd9fm2QJzQr12wwvJGlg1thgSSPNNkjrKtufOWK9YQeguSvJfdq3ZwHPat9/HTgJOAVYPoy4JEnrPtsgSaPCLn+atp7ZZzalSc4/BuwH/BOwCPjXqrpyiCFKd5uDgqXRZBukdZ3tz9xhQqVp6/+PnuSaqtpsmDFJkuYH2yBJo8Iuf7o7zMYlScNiGyRpJDgphe6OhX3TefZvO52nJGmm2AZJGgl2+dO0JbmEye8QOp2nJGlG2AZJGhUmVJIkSZI0TY6hkiRJkqRpMqGSJEmSpGkyoZIkSZKkaTKhkiRJkqRpMqGSJEmSpGn6/wFt3g+8+RnihAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Inspect the target variable\n", "train_survived_value_counts = df_train.survived.value_counts()\n", "test_survived_value_counts = df_test.survived.value_counts()\n", "\n", "\n", "plt.figure(figsize=(12, 4))\n", "\n", "plt.subplot(121)\n", "train_survived_value_counts.plot.bar()\n", "train_sex_ratio = train_survived_value_counts[True]/train_survived_value_counts[False]\n", "plt.title(f'Train set: survivied ratio: {train_sex_ratio:.2f}')\n", "plt.ylabel('Number of passengers')\n", "\n", "plt.subplot(122)\n", "test_survived_value_counts.plot.bar()\n", "test_sex_ratio = test_survived_value_counts[True]/test_survived_value_counts[False]\n", "plt.title(f'Test set: surived ratio: {test_sex_ratio:.2f}')\n", "\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next up, let's check whether the ratio of male to female passengers is not too dissimilar between the two sets." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:38.073343Z", "start_time": "2020-05-01T17:12:37.733604Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAEUCAYAAAAspncYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1i0lEQVR4nO3debhkVXnv8e8PmgjSNAi0RFAacUJRcWjFEVQMRqORgFdxAk0QEi8OV4yiIqKCiopGQWVwAFQIopCI4IBxnm01iI2gjDLbTA3NJOB7/9j7QFGcYZ/T53TV6fP9PM9+etdae3irurveWnutvXaqCkmSJEnS5K0x6AAkSZIkabayQSVJkiRJU2SDSpIkSZKmyAaVJEmSJE2RDSpJkiRJmiIbVJIkSZI0RTaoNKOSfD3J7oOOY1VJ8owklww4hn9LcmWSFUk2WoXnfVWSH62q841y/rcn+fSgzi9Jg5DkgCRfGOD5k+RzSa5N8otVfO6jkxy4Ks/Zd/459RtHY7NBpXtof4iPLH9NcnPP65dP5lhV9dyqOmamYu2XZIsklWTeqjrnMEmyFvARYMeqml9VVw86ppkwWsO1qt5XVXtM0/Hfm+TMJLcnOWCCbe+V5PC2EXtNklOSbDaVY0m6y3TmovZ430syLd8Rfccd6MWkIfA04O+A+1fVEwcdzEwZreE6Xb9xkvxNki8nubD9DfOMCbZf0bfckeTQnvo9kpzb1n0jyaYrG6PGZ4NK99D+EJ9fVfOBPwEv6Cn74sh2c7XRMuQ2AdYGlg46kKlqr3YO+rvpXOAtwKkdtn0D8GTg0cCmwHXAoT31kzmWpFbXXKSBWwRcWFU3DjqQqRqS3zM/Al4BXDHRhn3/NzYBbgZOBEiyPfA+4IXAhsAFwPEzFbQag/7RollkpFcgyVuTXAF8Lsl9knwtybK2u/9rSe7fs8+dVwRHruIl+XC77QVJnjvO+d6a5NIkNyQ5J8kObfkaSfZNcl6Sq5N8KcmG7W4/aP+8rr0y8+QO7+uAJCcm+UJ7rjOTPDTJ25L8OcnFSXbs2f7VSX7fbnt+kr3GOfamSb7Sfj4XJHn9GNs9KckVSdbsKfunJL9t15+YZEmS69uekI+McoyHAuf0vP/vtOVbJTm97T05J8mLe/Y5Oskn0wxbWJHkx0n+Nsl/tH9HZyd5bM/2I5/7DUnOSvJP47z3Mc87yrbfS3JQkh8DNwFbjvU5J1kX+Dqwac/VuU3Td/UwyT8mWZrkuvb4Dx/r/P2q6piq+jpwQ4fNHwh8s6qurKpbgP8Etp7isSRNYLwckGTt9rv86vb//i+TbJLkIODpwGHtd8Zhoxx31H3buvWTfCbJ5W1eOjDJmu33yuHAk9vjXtfxPXyvPcZP2v1OSbJRki+23/O/TLJFz/Yfa3PR9Ul+leTp4xz7Se1xr0tyRsbo7Wg/wy/3lX0sycfb9Ve13703tPnrHr2CSf4F+HTP+393W/78JP/bxvCTJI/u2efCJP+e5LdJbmw/103aPHRDkm8nuU/P9iemyY/Lk/wgydb9cfRsO+Z5R9m2kvzfJH8E/tjz/u/xOSf5e+DtwEva93lGW977G2eNJPsluSjNb4djk6w/1vl7VdVfquo/qupHwB1d9unxIuDPwA/b1y8ATqyqpVX1F+C9wHZJHjTJ42oSbFBpsv6W5orHImBPmn9Dn2tfb05zleQeiarHtjQ/+jcGPgh8Jkn6N0ryMGBv4AlVtR7wHODCtvr1wE7A9jQ9AtcCn2jrtmv/3KC9evPTJJu3X66bjxPXC4DPA/cBfgN8s31vmwHvAY7o2fbPwPOBBcCrgY8medwo72EN4BTgjPY4OwBvTPKc/m2r6mfAjcCzeopfBhzXrn8M+FhVLQAeBHxplGP8gbt+yG9QVc9K0/g4vT3OfYGXAp/sS0gvBvaj+Tu5Ffgp8Ov29ZdphhCOOI/mR8n6wLuBLyS53yjvvct5+72S5t/UesBFjPE5t1dBnwtc1nOV7rK+8z+U5orcG4GFwGnAKUn+pq3/ZJJPjhPLZHwGeGqaRt29gZfTNPgkzYzxcsDuNN9PDwA2Av4VuLmq3kHzg3Pv9jtj71GOO+q+bd0xwO3Ag4HHAjsCe1TV79vtftoedwOAJC9Le0FsHLvSfO9tRvO9/lOafLoh8HvgXT3b/hJ4TFt3HHBikrX7D5hmuPGpwIHttm8GvpJk4SjnPx54XpIF7b5r0uSD49rv8I8Dz21z8FOA/+0/QFV9pu/9v6vNh58F9qL5HI8AvprkXj277kIzTPChNPn36zQNlo1pcm/vxcevAw+hySW/Bkbtnex43n470fwueUT7etTPuaq+QdPrc0L7PrcZ5VivapdnAlsC8+n5PdQ2IF82TixTtTtwbFXVyKnahZ7XAI+cgXOrZYNKk/VX4F1VdWtV3VxVV1fVV6rqpqq6ATiIJsmN5aKqOqqq7qBJUPej6a7udwdwL+ARSdaqqgur6ry2bi/gHVV1SVXdChwAvChjdNlX1Z+qaoOq+tM4cf2wqr5ZVbfTdJsvBD5QVbfR9DhskWSD9ninVtV51fg+8C2aRka/JwALq+o97dWn84GjaJLoaI6naXiQZD3gedzVTX8b8OAkG1fVirYB1sXzaYZifK6qbq+qXwNfobmiNeLkqvpV27tyMnBLVR3b/h2dQPPjgfa9n1hVl1XVX6vqBJqreqONme9y3n5Ht1fUbq+q2ybxOY/mJcCpVXV6+3f4YWAdmh8FVNVrq+q1HY81kT/QDEe6FLgeeDhNI1zSzBgvB9xG82P6wVV1R/vddn3H4466b5pequcCb6yqG6vqz8BHGfu7nKo6rqrG7B1pfa79jltO02g4r6q+3ZOHer97v9Dm29ur6hCa/PiwUY75CuC0qjqt/Z4+HVhCk0/6Y7yIpoGyU1v0LOCmnvzyV+CRSdapqsurqutQ8tcAR1TVz9vP8Riai3VP6tnm0LZX/1Kahu7Pq+o37d/nyX3v/bNVdUPP3/U2Y/T8dDlvv/dX1TVVdXN7rq6f82heDnykqs6vqhXA24BdR36bVNWjq+q4cY8wSe2F4u1pfk+NOA14cZJHJ1kH2B8o4N7TeW7dnQ0qTday9oc3AEnuneSItov7epohdxukZ+hanzvHBlfVTe3q/P6Nqupcmt6FA4A/J/nP3HVT5SLg5LbX6TqaK3l3MHrDrKsre9ZvBq5qGxQjr++MM8lzk/wszVC262gS1cajHHMRzbC063piffs4cR4H7NxeTdsZ+HWb8AD+heZK3tlphoI8v+P7WgRs2xfDy2l6Gsd67/2v7/z7SbJbz3CK62iueI313ic6b7+Le19M4nMezaY0vVwAVNVf2+NvNuYeU/cpmvvWNgLWBU7CHippJo2XAz5PM8LgP5NcluSDaSbr6WKsfRcBawGX95zzCJoek5Uxme/efdIMgV7enn99xv7u/T99371Po7l4OZrjaC/k0TMqopqRAC+h6X26PMmpSbbq+L4WAfv0xfAAmu/lEZ3ee5phlR9IM7zzeu4aqTLWe5/ovP36807Xz3k0d8s77fo8Vu63yUR2A35UVReMFFTV/9D0bn6ljeFCmiHnA52BeHVng0qTVX2v96G5erNtNcPRRobc3WMY36RP1FzhexrNl2QBB7dVF9MMQ9igZ1m7vdLVH9+0ahs7X6Hp8dikmuEdpzH6+70YuKAvzvWq6h5XCgGq6iyaL7/ncvfhflTVH6vqpTQJ/GDgy+2QjIlcDHy/L4b5VfVvnd90K8kimh62vYGN2vf+O8Z+75M9751/dx0+54n+ni+j+XczcrzQJNZLJ9hvKrah6V27pr2CeijwxCRdk7CkyRkzB7S92++uqkfQ9Eg/n+ZHJ0zwvTHOvhfT9HRs3HO+BVU1MoR5pvPO04G30gzHu0/7fbicsb97P9/32axbVR8Y4/AnAs9Ic+/zP3H3vPPNqvo7msbY2TTf/11cDBzUF8O9q2oqEyO8jGZyhWfTNG62aMvHeu+TPW9v3pnoc55U3qG5DeJ27t5YnG67cffeKQCq6hNV9ZCqui9NLp1Hk681Q2xQaWWtR3M16bo0NwW/a4LtO0nysCTPan9Y39KeY6TH6HDgoPYHPkkWJnlhW7eMZpjCltMRxyj+hmYIwDLg9jSTauw4xra/AK5PM7nGOu2VtkcmecI4xz+OZuz4drQz9gAkeUWShW1Py3VtcZcbV78GPDTJK5Os1S5PyCQmaOixLk1CWdbG9GrGHpO9sued6HO+EthojGEf0Nxj9g9JdmivMO9D84PoJ11O3sa7Ns135Lw0N6uP1ev6S2C3NDetrwW8lub+rqumcCxJExszByR5ZpJHtf/HrqcZxjfyXXkl4+SGsfatqstphhwfkmRBmskHHpRmNrWR494/7T2aM2A9mh/my2i+Q/anubd0NF8AXpDkOW3OWTvNhFL3H23jqloGfI/m3q0LqrknjDSTRPxje+HuVmAF3SdLOAr41yTbprFukn9IM5R9stZrz381zZC1983geSf6nK+kGf4/1m/n44H/l+SBSeZz1z1Xt3c5eZpHcIzcF/c37d/dmBenkzyFZtTFiX3la7e/NZJmSOCRNPdgX9slDk2NDSqtrP+guTflKuBnwDem6bj3Aj7QHvcKmp6Zt7d1HwO+CnwryQ3tebeFO4cRHgT8uO3yf1KaSSlWZPxJKTqp5j6x19P8YL+W5urZV8fY9g6am20fQzNt6VU0syGNN+vP8cAzgO+M/CBv/T2wNMkKmve/a+/Qywni3ZFmrP9lNJ/lwTSf76S0PWiH0Nw4fSXwKODHM3HeiT7nqjqb5rM6v/173rRv/3No7iU4lOZzfwHNlMt/AUjz3KjDxwnhKJpG/EuBd7Trr2z3fXr79zDizTSN/j/SJOLn0VzpnfBYkqZkzBxAM6z4yzQNot8D36dpZIzs96I0M5h+fJTjjrfvbjQXes6i+U76MncNo/sOzaMqrkgyciHl5Umm6/EV36QZRvwHmlEMt9A3VG1EVV1M06Pzdprvo4uBf2f833vH0fQA9d7fswbNhajLgGto7tPpdN9pVS2huZ/pMJrP6lyayRqm4lia93wpzWc/5v3D03DeiT7nkYbL1Ul+Pcr+n6UZNvoDmpx/C/C6kco0s86O9/y0c2jyw2ZtLDfT9nileXB9/1Dy3YGT2nzZa22av8sVNBd2fwq8c5zzahqkakZ7qiVJkiRptWUPlSRJkiRNkQ0qSZIkSZoiG1SSJEmSNEU2qCRJq70keydZkuTWJEf3lL+8nbRmZLkpSSV5fFt/QJLb+raZqVlEJUmz0CprUPUloxVJ7khyaE/9DknObpPZd0emQ23rkuTgJFe3ywfHm0pSkqQ+lwEH0szEdaeq+mL7jLT5VTWfZiaz84HeWbxO6N2mqs5fdWFLkobdvFV1ojZRAdA+1+BK2iko0zwA8yRgD+AU4L3ACcCT2l32BHaieYBmAafTJLzxpj1m4403ri222GIa34UkaZB+9atfXVVVCye7X1WdBJBkMTDqM3lauwPH1jRMgWsOkqTVx3j5Z5U1qPq8CPgz8MP29c7A0qoaaWAdAFyVZKv2eTO7A4dU1SVt/SE0zxoYt0G1xRZbsGTJkpl5B5KkVS7JRTN47EU0D9X+576qFyS5BrgcOKyqPjXOMfakuQjI5ptvbg6SpNXEePlnUPdQ9V8B3Bo4Y6Syqm4EzmvL71Hfrm/NKJLs2Y6TX7Js2bJpD1yStNraDfhhVV3QU/Yl4OHAQpoLefsneelYB6iqI6tqcVUtXrhw0h1pkqRZaJU3qJJsTvPE7WN6iucDy/s2XQ6sN0b9cmD+aPdRmcwkSVO0G3fPTVTVWVV1WVXdUVU/AT5GM8pCkiRgMD1UuwE/6rsCuAJY0LfdAuCGMeoXACumY4y7JElJngpsCnx5gk0LcFIkSdKdBtWgOqavbCnNhBPAnZNWPKgtv0d9u74USZI6SDIvydrAmsCaSdZO0nsf8e7AV6rqhr79XpjkPu1ss08EXg/896qLXJI07FZpgyrJU4DNaGf363Ey8Mgku7QJb3/gt+2EFADHAm9KslmSTYF9gKNXUdiSpNlvP+BmYF/gFe36fgBt3nkx97zYB7ArcC7NiIljgYOrarTtJElz1Kqe5W934KT+K4BVtSzJLsBhwBeAn9MksRFHAFsCZ7avP92WSZI0oao6ADhgjLpbgA3GqBtzAgpJkmAVN6iqaq9x6r4NbDVGXQFvaRdJkiRJGgqDeg6VJrDFvqcOOoQ558IP/MOgQ5CkgTP/DIY5SJq9BvUcKkmSJEma9WxQSZIkSdIU2aCSJEmSpCmyQSVJkiRJU2SDSpIkSZKmyAaVJEmSJE2RDSpJkiRJmiIbVJIkSZI0RTaoJEmSJGmKbFBJkiRJ0hTZoJIkSZKkKerUoEqyMMnCntePSnJgkpfOXGiSJEmSNNy69lB9CXgBQJKNgR8A/wQcnmSfGYpNkiRJkoZa1wbVo4GftesvAs6tqq2B3YC9ZiIwSZIkSRp2XRtU6wAr2vVnA19t138NPGC6g5IkSZKk2aBrg+qPwM5JHgDsCHyrLd8EuG4G4pIkSZKkode1QfVu4GDgQuBnVfXztvw5wG8mc8Ikuyb5fZIbk5yX5Olt+Q5Jzk5yU5LvJlnUs0+SHJzk6nb5YJJM5rySpLkryd5JliS5NcnRPeVbJKkkK3qWd/bUm38kSeOa12WjqjopyebApsAZPVXfBr7S9WRJ/o6mYfYS4BfA/dryjYGTgD2AU4D3AicAT2p33RPYCdgGKOB04Hzg8K7nliTNaZcBB9JcCFxnlPoNqur2UcrNP5KkcU3YQ5VkrSRXABtX1W+q6q8jdVX186o6exLnezfwnqr6WVX9taourapLgZ2BpVV1YlXdAhwAbJNkq3a/3YFDquqSdvtDgFdN4rySpDmsqk6qqv8Crp7kruYfSdK4JmxQVdVtwG00V+amLMmawGJgYZJzk1yS5LAk6wBb09PzVVU3Aue15fTXt+tbI0nS9LiozUufa0dNjJhU/kmyZzu0cMmyZctmKlZJ0hDpeg/VocDbknQaIjiGTYC1aKZdfzrwGOCxwH7AfGB53/bLgfXa9f765cD80caxm8wkSZNwFfAEYBHweJq888We+s75B6CqjqyqxVW1eOHChTMUsiRpmHRtID0d2B64NMnvgBt7K6vqHzsc4+b2z0Or6nKAJB+haVD9AFjQt/0C4IZ2fUVf/QJgRVXdo9esqo4EjgRYvHjxSvWqSZJWb1W1AljSvrwyyd7A5UkWVNX1TCL/SJLmpq4NqquYxOQTo6mqa5NcwuhDB5fSjFMHIMm6wIPa8pH6bWgmsqBdX4okSdNrJEeN9ECZfyRJ4+o6y9+rp+l8nwNel+QbNPdlvRH4GnAy8KEkuwCnAvsDv+2Z8OJY4E1JTqNJdvvQDEOUJGlC7ZD1ecCawJpJ1gZupxnmdx3N8xbvA3wc+F5VjQzzM/9IksbV9R4qAJIsTvKStgeJJOtO8r6q9wK/BP4A/J7mGVYHVdUyYBfgIOBaYFtg1579jqCZTv1M4Hc0ja4jJhO7JGlO249m6Pm+wCva9f2ALYFv0Awx/x1wK/DSnv3MP5KkcXVqDCXZBPgqzY27BTyE5jkcHwFuAd7Q5TjtjIGvbZf+um8DW91jp6augLe0iyRJk1JVB9A8kmM0x4+zn/lHkjSurj1UHwWuADYCbuopPxHYcbqDkiRJkqTZoOtwvR2AHdqJJXrLzwM2n/aoJEmSJGkW6NpDtQ7wl1HKF9IM+ZMkSZKkOadrg+oHwKt6XleSNYG3Av8z3UFJkiRJ0mzQdcjfW4DvJ3kCcC/gEGBrYH3gqTMUmyRJkiQNtU49VFV1FvAo4CfAt4C1aSakeGxVnTdz4UmSJEnS8Or8DKmqugJ41wzGIkmSJEmzStfnUG03RlXRTEpxXlVdM21RSZIkSdIs0LWH6ns0jSeAkXnTe1//NclXgVdW1Y3TF54kSZIkDa+us/z9A/B74BXAg9vlFcBSYJd2eQzwgekPUZIkSZKGU9ceqgOBN1RV7xTp5ydZBhxcVY9PcgdwKPC66Q5SkiRJkoZR1x6qRwCXjlJ+aVsHcCbwt9MRlCRJkiTNBl0bVGcB70hyr5GCdv3tbR3AA4Arpjc8SZIkSRpeXYf8vRY4Bbg0ye9oJqR4FPBX4PntNlsCn5z2CCVJkiRpSHVqUFXVz5M8kGYiiofRzOx3PPDFkVn9qurYGYtSkiRJkobQZB7seyNwxAzGIkmSJEmzSucGVZIHAE8H7kvfvVdV9ZFpjkuSJEmShl6nBlWSlwOfBW4HlnHXQ31p121QSZIkSZpzus7y9x7gEGBBVW1RVQ/sWbbserIk30tyS5IV7XJOT90OSc5OclOS7yZZ1FOXJAcnubpdPpgknd+lJGlOS7J3kiVJbk1ydE/5k5KcnuSaJMuSnJjkfj31ByS5rSdvrUjSOe9JklZ/XRtUmwCfrqo7puGce1fV/HZ5GECSjYGTgHcCGwJLgBN69tkT2AnYBng0zcyCe01DLJKkueEymofUf7av/D7AkcAWwCLgBuBzfduc0JO35lfV+TMdrCRp9uh6D9VpwLbATCWRnYGlVXUiNFcEgauSbFVVZwO7A4dU1SVt/SHAa4DDZygeSdJqpKpOAkiyGLh/T/nXe7dLchjw/VUbnSRpNuvaoDodODjJ1sCZwG29lSOJqqP3J/kAcA7wjqr6HrA1cEbP8W5Mcl5bfnZ/fbu+9STOKUlSF9sBS/vKXpDkGuBy4LCq+tRYOyfZk2ZUBZtvvvmMBSlJGh5dG1Qj06W/fZS6AtbseJy3AmcBfwF2BU5J8hhgPs1kF72WA+u16/Pb171185OkqnonyDCZSZKmJMmjgf2BF/YUf4lmSOCVNCM1vpLkuqo6frRjVNWR7fYsXry4RttGkrR66XQPVVWtMc7StTFFVf28qm6oqlur6hjgx8DzgBXAgr7NF9CMZWeU+gXAiv7GVHuOI6tqcVUtXrhwYdfQJElzWJIHA18H3lBVPxwpr6qzquqyqrqjqn4CfAx40aDilCQNn66TUsyUAkIzvGKbkcIk6wIP4q5hF3erb9f7h2RIkjRp7ayy3wbeW1Wfn2DzkbwlSRLQsUHVTlv+2iRL22nNt2zL903y4o7H2CDJc5KsnWRe+2yr7YBvAicDj0yyS5K1aYZc/LadkALgWOBNSTZLsimwD3D0pN6pJGnOavPO2jRD1NfsyUWbAd8BPlFV95joKMkLk9ynzYNPBF4P/PeqjV6SNMy69lC9AdiPZlx475W5S4G9Ox5jLZopa5cBVwGvA3aqqnOqahmwC3AQcC3NOPVde/Y9AjiFZkKM3wGnctd9XZIkTWQ/4GZgX+AV7fp+wB7AlsC7ep811bPfrsC5NEPQjwUOboesS5IEdJ+U4l+B11TVqUkO7Cn/NR1n22sbTU8Yp/7bwFZj1BXwlnaRJGlSquoA4IAxqt89zn4vnYl4JEmrj649VItoeob63QasM33hSJIkSdLs0bVBdT7wuFHKn0czDbokSZIkzTldh/x9GDgsyb1p7qF6cpJX0gzB++eZCk6SJEmShlmnBlVVfS7JPOB9wL2Bz9NMSPH6qjphBuOTJEmSpKHVtYeKqjoKOCrJxsAaVfXnmQtLkiRJkoZf1+dQrZFkDYCqugpYI8keSZ4yo9FJkiRJ0hDrOinFqTTPjSLJfGAJ8CHg+0l2m6HYJEmSJGmodW1QPZ7mSfIAOwPXA/cFXgO8eQbikiRJkqSh17VBtR5wXbu+I3ByVd1G08h60AzEJUmSJElDr2uD6k/AU5OsCzwHOL0t3xC4aSYCkyRJkqRh13WWv4/QTJW+ArgI+EFbvh1w5gzEJUmSJElDr+tzqI5I8ivgAcDpVfXXtuo84J0zFZwkSZIkDbPJPIdqCc3sfgAkWauqTp2RqCRJkiRpFuj6HKrXJ9ml5/VngJuTnJPkYTMWnSRJkiQNsa6TUrweWAaQZDvgxcDLgP8FDpmRyCRJkiRpyHUd8rcZcGG7/gLgxKr6UpIzgR/ORGCSJEmSNOy69lBdDyxs1/8O+J92/TZg7ekOSpIkSZJmg649VN8CjkryG+DBwNfb8q2BC2YiMEmSJEkadl17qP4v8GNgY+BFVXVNW/444PjJnjTJQ5LckuQLPWU7JDk7yU1JvptkUU9dkhyc5Op2+WCSTPa8kqS5KcneSZYkuTXJ0X115h9J0pR1fQ7V9cDrRil/1xTP+wnglyMvkmwMnATsAZwCvBc4AXhSu8mewE7ANkABpwPnA4dP8fySpLnlMuBA4DnAOiOF5h9J0srq2kN1pyR/m2Tz3mWS++8KXMdd92EB7AwsraoTq+oW4ABgmyRbtfW7A4dU1SVVdSnNzIKvmmzskqS5qapOqqr/Aq7uqzL/SJJWStfnUK2f5JgkNwOX0tw31bt0kmQB8B5gn76qrYEzRl5U1Y3AeW35Perb9a2RJGnlTGv+SbJnO7RwybJly2YgXEnSsOnaQ/VhmuEOOwG30DyD6t+BS4CXTOJ87wU+U1UX95XPB5b3lS0H1hujfjkwf7Rx7CYzSdIkTFv+AaiqI6tqcVUtXrhw4WibSJJWM11n+Xsu8NKq+mGSO4BfVdUJSS4H9gK+PNEBkjwGeDbw2FGqVwAL+soWADeMUb8AWFFV1X+gqjoSOBJg8eLF96iXJKnHtOUfSdLc1LWHagPgonZ9ObBRu/5T4Ckdj/EMYAvgT0muAN4M7JLk18BSmh4wAJKsCzyoLae/vl1fiiRJK8f8I0laKV0bVOcBW7brvwd2bYc77AxcM+Zed3ckTZJ6TLscDpxKM+PSycAjk+ySZG1gf+C3VXV2u++xwJuSbJZkU5p7sI7ueF5J0hyXZF6bX9YE1kyydpJ5mH8kSSupa4PqaODR7foHaIb5/QX4EHBwlwNU1U1VdcXIQjOM4paqWlZVy4BdgIOAa4FtgV17dj+CZjrbM4Hf0TTEjugYuyRJ+wE3A/sCr2jX9zP/SJJWVtfnUH20Z/07SR4OPB74Y1WdOZUTV9UBfa+/DWw1xrYFvKVdJEmalDbnHDBGnflHkjRlXSeluJuquoi77qmSJEmSZpUt9j110CHMSRd+4B8GHcK06/xg3yQ7JflBkqva5YdJ/mkmg5MkSZKkYdaphyrJPsD7aG7OPbotfjJwXJJ3VtWHZyY8Sas7rxCueqvj1UFJkgal65C/NwN7V9VRPWWfTfIL4D00D/6VJEmSpDml65C/+cB3Ryn/blsnSZIkSXNO1wbVfwEvGqV8F+Cr0xaNJEmSJM0iXYf8nQvsm+SZwE/bsie1y0eSvGlkw6r6yPSGKEmSJEnDqWuD6lU0Dzx8aLuMuBZ4dc/rAmxQSZIkSZoTuj7Y94EzHYgkSZIkzTadn0MlSZIkSbo7G1SSJEmSNEU2qCRJkiRpimxQSZIkSdIUjdmgSvLZJOu169sl6TojoCRJkiTNCeP1UL0CWLdd/y6w4cyHI0mSJEmzx3i9ThcCr0vyLSDAk5NcO9qGVfWDGYhNkiRJkobaeA2qfweOAt5G88Dek8fYroA1pzkuSZIkSRp6Yzaoquq/gf9OsgFwDbA18OdVFJckSZIkDb0JZ/mrquuAZwJ/rKqrR1u6nizJF5JcnuT6JH9IskdP3Q5Jzk5yU5LvJlnUU5ckBye5ul0+mCSTfK+SJN1DkhV9yx1JDm3rtkhSffXvHHTMkqTh0Wnmvqr6fpJ7JdkNeATNML+zgOOq6tZJnO/9wL9U1a1JtgK+l+Q3wEXAScAewCnAe4ETgCe1++0J7ARs0577dOB84PBJnFuSpHuoqvkj60nWBa4ETuzbbIOqun2VBiZJmhU6PYcqySOAPwAfAbalaeh8FPhDkod3PVlVLe1pgFW7PAjYGVhaVSdW1S3AAcA2baMLYHfgkKq6pKouBQ4BXtX1vJIkdfQimuHtPxx0IJKk2aHrg30/BvwvsHlVPb2qng5sDpwB/MdkTpjkk0luAs4GLgdOo7k/64yRbarqRuC8tpz++nZ9ayRJml67A8dWVfWVX5TkkiSfS7LxWDsn2TPJkiRLli1bNrORSpKGQtcG1VOBt1fV9SMF7fo7gKdN5oRV9VpgPeDpNMP8bgXmA8v7Nl3ebsco9cuB+aPdR2UykyRNRZLNge2BY3qKrwKeACwCHk+Tl7441jGq6siqWlxVixcuXDiT4UqShkTXBtUtwAajlK/f1k1KVd1RVT8C7g/8G7ACWNC32QLghna9v34BsGKUK4gmM0nSVO0G/KiqLhgpqKoVVbWkqm6vqiuBvYEdk/TnLEnSHNW1QXUKcFSSpyZZs12eBhwBfHUlzj+P5h6qpTQTTgB33hQ8Uk5/fbu+FEmSps9u3L13ajQjF/KcaVaSBHRvUL0B+CPNTbq3tMv3aSaqeGOXAyS5b5Jdk8xvG2TPAV4KfIfmocGPTLJLkrWB/YHfVtXZ7e7HAm9KslmSTYF9gKM7xi5J0riSPAXYjL7Z/ZJsm+RhSdZIshHwceB7VdU/TF2SNEd1nTb9OuCFSR4MPJzmytxZVXXuJM5VNMP7DqdpyF0EvLF9gDBJdgEOA74A/BzYtWffI4AtgTPb159uyyRJmg67AydV1Q195VsC7wPuC1xP89iOl67i2CRJQ6xTg2pE24CaTCOqd99lNDf7jlX/bWCrMeoKeEu7SJI0rapqrzHKjweOX8XhSJJmka5D/iRJkiRJfWxQSZIkSdIU2aCSJEmSpCmasEGVZF6S17az60mSJEmSWhM2qKrqduBDwFozH44kSZIkzR5dh/z9DHjcTAYiSZIkSbNN12nTjwIOSbII+BVwY29lVf16ugOTJEmSpGHXtUF1XPvnR0apK2DN6QlHkiRJkmaPrg2qB85oFJIkSZI0C3VqUFXVRTMdiCRJkiTNNp2fQ5XkuUm+luSsJA9oy/ZIssPMhSdJkiRJw6tTgyrJy4EvAX+kGf43MoX6msBbZiY0SZIkSRpuXXuo3gK8pqr+H3B7T/nPgMdMd1CSJEmSNBt0bVA9BPjpKOUrgAXTF44kSZIkzR5dG1SXAQ8dpXw74LzpC0eSJEmSZo+uDaojgY8neWr7+gFJdgc+CHxqRiKTJEmSpCHXddr0DyZZHzgdWBv4LnAr8OGq+sQMxidJkiRJQ6vrg32pqnckOQh4BE3P1llVtWLGIpMkSZKkIdf5OVStAm4BbgLumMyOSe6V5DNJLkpyQ5LfJHluT/0OSc5OclOS7yZZ1FOXJAcnubpdPpgkk4xdkqRRJflekluSrGiXc3rqxsxPkiR1fQ7VvZL8B3ANcAbwW+CaJB9LsnbHc80DLga2B9YH3gl8KckWSTYGTmrLNgSWACf07LsnsBOwDfBo4PnAXh3PK0lSF3tX1fx2eRhAh/wkSZrjug75+xSwI7AHd02f/mTg/cB6wD9PdICquhE4oKfoa0kuAB4PbAQsraoTAZIcAFyVZKuqOhvYHTikqi5p6w8BXgMc3jF+SZKmYmfGz0+SpDmu65C//wO8uqq+WFXnt8sXgX8BXjSVEyfZhGYq9qXA1jQ9X8Cdja/z2nL669v1rRlFkj2TLEmyZNmyZVMJTZI0N70/yVVJfpzkGW3ZRPnpbsxBkjT3dG1Q3QhcOkr5pcDNkz1pkrWALwLHtFf45gPL+zZbTtP7xSj1y4H5o91HVVVHVtXiqlq8cOHCyYYmSZqb3gpsCWxG86iQU5I8iInz092YgyRp7unaoDoUeFeSdUYK2vV3tnWdJVkD+DzwF2DvtngFsKBv0wXADWPULwBWVFVN5tySJI2mqn5eVTdU1a1VdQzwY+B5TJyfJElz3Jj3UCX5al/RM4BLk/y2ff2odv91u56s7VH6DLAJ8Lyquq2tWkpzn9TIdusCD2rLR+q3AX7Rvt6mp06SpOlWQJg4P0mS5rjxJqW4uu/1V/peXzCF830KeDjw7KrqHSp4MvChJLsApwL7A7/tueH3WOBNSU6jSXL7MMmeMUmSRpNkA2Bb4PvA7cBLgO2AN9LMbjtefpIkzXFjNqiq6tXTeaL2uR17AbcCV/Tc/rRXVX2xTVaHAV8Afg7s2rP7ETRj289sX3+6LZMkaWWtBRwIbEXzjMWzgZ2q6hyACfKTJGmO6zpt+kqrqotohk+MVf9tmmQ2Wl0Bb2kXSZKmTVUtA54wTv2Y+UmSpE4NqiT3oXmG1DOB+9I3mUVV3XfaI5MkSZKkIde1h+pYmmduHANcSXMfkyRJkiTNaV0bVM8Atq+qX89gLJIkSZI0q3R9DtV5k9hWkiRJkuaEro2kNwDvT7JNkjVnMiBJkiRJmi26Dvk7F1gH+DVAz5TnAFSVjSxJkiRJc07XBtXxwPrA63FSCkmSJEkCujeoFgNPrKrfzWQwkiRJkjSbdL2H6ixgwUwGIkmSJEmzTdcG1X7AR5I8O8kmSTbsXWYyQEmSJEkaVl2H/J3W/vkt7n7/VNrXTkohSZIkac7p2qB65oxGIUmSJEmzUKcGVVV9f6YDkSRJkqTZplODKsnjxquvql9PTziSJEmSNHt0HfK3hOZeqd4n+vbeS+U9VJIkSZLmnK4Nqgf2vV4LeCzwDuBt0xqRJEmSJM0SXe+humiU4nOTLAfeBXx9WqOSJEmSpFmg63OoxnIB8JhpiEOSJEmSZp1ODar+B/km2SjJI4H3A+d0PVmSvZMsSXJrkqP76nZIcnaSm5J8N8minrokOTjJ1e3ywSS5xwkkSZqkJPdK8pkkFyW5Iclvkjy3rdsiSSVZ0bO8c9AxS5KGR9d7qK7i7pNQQDNBxcXASyZxvsuAA4HnAOvceaBkY+AkYA/gFOC9wAnAk9pN9gR2ArZp4zgdOB84fBLnliRpNPNo8tn2wJ+A5wFfSvKonm02qKrbBxGcJGm4TfXBvn8FlgHnTibBVNVJAEkWA/fvqdoZWFpVJ7b1BwBXJdmqqs4GdgcOqapL2vpDgNdgg0qStJKq6kbggJ6iryW5AHg88KuBBCVJmjWG5cG+WwNn9JzvxiTnteVn99e361uPdqAke9L0aLH55pvPVLySpNVUkk2AhwJLe4ovSjIyQuLfq+qqMfY1B0nSHDPuPVSj3Ds16jINccwHlveVLQfWG6N+OTB/tPuoqurIqlpcVYsXLlw4DaFJkuaKJGsBXwSOaUdIXAU8AVhE02O1Xls/KnOQJM09E/VQjXbvVL/qcJyJrAAW9JUtAG4Yo34BsKKqJopNkqROkqwBfB74C7A3QFWtoHm4PcCVSfYGLk+yoKquH0ykkqRhMlFDqP/eqV5/D7wBmI6bdJfS3CcFQJJ1gQdx13CLpTQTUvyifb0Ndx+KIUnSlLUjHj4DbAI8r6puG2PTkQt5zjQrSQImaFCNdu9UkscBBwPbAUfQzMjXSZJ57TnXBNZMsjZNg+xk4ENJdgFOBfYHftsOtwA4FnhTktNoktk+wKFdzytJ0gQ+BTwceHZV3TxSmGRb4Drgj8B9gI8D36uq/mHqkqQ5qvODfZM8MMlxwM+Ba4BHVNXrq2rZJM63H3AzsC/winZ9v/YYuwAHAdcC2wK79ux3BM106mcCv6NpdB0xifNKkjSq9rmHe9E8qP6KnudNvRzYEvgGzRD03wG3Ai8dVKySpOEz4b1PSTai6TH6V+DHwJOrasn4e42uqg7g7lPT9tZ9G9hqjLoC3tIukiRNm6q6iPGH8B2/qmKRJM0+E83y93bgPJqHHb6wqp411caUJEmSJK1uJuqhOpBmWN4lwGuTvHa0jarqH6c7MEmSJEkadhM1qI5l4mnTJUmSJGlOmmiWv1etojgkSZIkadbpPMufJEmSJOnubFBJkiRJ0hTZoJIkSZKkKbJBJUmSJElTZINKkiRJkqbIBpUkSZIkTZENKkmSJEmaIhtUkiRJkjRFNqgkSZIkaYpsUEmSJEnSFNmgkiRJkqQpskElSZIkSVNkg0qSJEmSpsgGlSRJkiRN0axpUCXZMMnJSW5MclGSlw06JknS3GAOkiSNZd6gA5iETwB/ATYBHgOcmuSMqlo60KgkSXOBOUiSNKpZ0UOVZF1gF+CdVbWiqn4EfBV45WAjkySt7sxBkqTxzJYeqocCd1TVH3rKzgC2798wyZ7Anu3LFUnOWQXx6S4bA1cNOoipyMGDjkCzjP/WB2PRAM5pDpo9/H+pucJ/66vemPlntjSo5gPL+8qWA+v1b1hVRwJHroqgdE9JllTV4kHHIc00/63PKeagWcL/l5or/Lc+XGbFkD9gBbCgr2wBcMMAYpEkzS3mIEnSmGZLg+oPwLwkD+kp2wbwZmBJ0kwzB0mSxjQrGlRVdSNwEvCeJOsmeSrwQuDzg41Mo3Coi+YK/63PEeagWcX/l5or/Lc+RFJVg46hkyQbAp8F/g64Gti3qo4bbFSSpLnAHCRJGsusaVBJkiRJ0rCZFUP+JEmSJGkY2aCSJEmSpCmyQSVJkiRJU2SDSpI6SHKvJAclOT/J8rZsxyR7Dzo2SdLqzRw03GxQaVokWSvJ05O8pH29bpJ1Bx2XNI0+CjwSeDkwMpvPUuDfBhaRJMAcpDnBHDTEnOVPKy3Jo4CvArcC96+q+UmeB+xeVS8ZbHTS9EhyOfDgqroxyTVVtWFbfl1VbTDY6KS5yxykucAcNNzsodJ0+BSwf1VtBdzWln0feNrgQpKm3V+Aeb0FSRbSPJNI0uCYgzQXmIOGmA0qTYetgS+06wVQVTcC6wwsImn6nQgck+SBAEnuBxwG/OdAo5JkDtJcYA4aYjaoNB0uBB7fW5DkicC5A4lGmhlvp/m3fiawAfBH4DLg3YMLSRLmIM0N5qAh5j1UWmlJng98Bjgc2Ac4CPhX4DVV9a1BxibNhHaYxVXlF6g0cOYgzTXmoOFjg0rTIsnjgD2ARcDFwFFV9avBRiWtnCRbdtmuqs6f6Vgkjc0cpNWROWj2sEElSWNI8leaezIyzmZVVWuuopAkSXOEOWj2sEGlKUnyni7bVdX+Mx2LJGluMQdJGibzJt5EGtUDBh2AJGnOMgdJGhr2UElSB0nmAa8Ftgc2pmcIRlVtN6i4JEmrP3PQcHPadE2bJOsleWCSLUeWQcckTaOPAnsBP6CZovkrwH2B7wwyKEkNc5BWc+agIWYPlVZakkcAXwS24a6bJ0ceruiNklotJLkUeHJV/SnJdVW1QZKtgCOqavtBxyfNVeYgzQXmoOFmD5WmwyeB7wIbAtcD9wGOAHYfZFDSNLs3zXTMADcnuXdVnQ08doAxSTIHaW4wBw0xe6i00pJcC9y3qm7ruWqyLvC7qnrgoOOTpkOSnwBvrKpfJDkF+D3Nj7eXV9XDBxudNHeZgzQXmIOGmz1Umg63AGu161cl2Zzm39ZGgwtJmnZvAG5v198EPA54AbDnwCKSBOYgzQ3moCFmD5VWWpIvAadV1dFJPgD8I02C+1NV7TTQ4CRJqzVzkKRBs0GlaZVkDeBlwHzg2Kq6acAhSdMmyRbAo2n+fd+pqo4bSECS7sYcpNWZOWh42aDSSkuyPvB6mhsj+/+T7ziQoKRpluRtwP7AUuDmnqryGSDS4JiDNBeYg4bbvEEHoNXCicCawMnc/T+5tDrZB3h8VZ016EAk3Y05SHOBOWiI2aDSdHgSsFFV3TboQKQZdDVw4aCDkHQP5iDNBeagIeYsf5oOPwKcslOruzcCRyZZnGTz3mXQgUlznDlIc8EbMQcNLe+h0kpLcl/gNODnwJW9dVX1noEEJU2zJC8EjgI27quqqlpzACFJwhykucEcNNwc8qfpcBDwAJqu6AU95bbWtTr5JPB24D/xPg1pmJiDNBeYg4aYPVRaaUluAB5aVZcPOhZppiS5Eti0qu4YdCyS7mIO0lxgDhpu3kOl6XA+4M3AWt19GNg3SQYdiKS7MQdpLjAHDTF7qLTSkrwZ2Bk4lHuOX//OQIKSplmSi4G/Bf5CM9vSnarKm4KlATEHaS4wBw03G1RaaUkuGKOqqmrLVRqMNEOSbD9WXVV9f1XGIuku5iDNBeag4WaDSpIkSZKmyHuoJKmDJPdKclCS85Msb8t2TLL3oGOTJK3ezEHDzQaVJHXzUeCRwMu5azrmpcC/DSwiSdJcYQ4aYg75k6QOklwOPLiqbkxyTVVt2JZfV1UbDDY6SdLqzBw03OyhkqRu/kLfw9CTLKRvtiVJkmaAOWiI2aCSpG5OBI5J8kCAJPcDDqN5ar0kSTPJHDTEbFBJ0hj6bvY9ArgQOBPYAPgjcBnwnlUemCRptWcOmj28h0qSxpBkeVWt365fX1UL2vWFwFXlF6gkaYaYg2aPeRNvIklz1nlJDqGZSWmtJK8GMlKZNKtV9dnBhCdJWo2Zg2YJe6gkaQxJHgq8BVgEPBP44SibVVU9a5UGJkla7ZmDZg8bVJLUQZL/qaodBh2HJGnuMQcNNxtUkiRJkjRFzvInSZIkSVNkg0qSJEmSpsgGlSRJkiRNkQ0qSZIkSZoiG1SSJEmSNEX/HxijmmEXYCfjAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Check the sex balance\n", "train_sex_value_counts = df_train.sex.value_counts()\n", "test_sex_value_counts = df_test.sex.value_counts()\n", "\n", "plt.figure(figsize=(12, 4))\n", "\n", "plt.subplot(121)\n", "train_sex_value_counts.plot.bar()\n", "train_sex_ratio = train_sex_value_counts['male']/train_sex_value_counts['female']\n", "plt.title(f'Train set: male vs female ratio: {train_sex_ratio:.2f}')\n", "plt.ylabel('Number of passengers')\n", "\n", "plt.subplot(122)\n", "test_sex_value_counts.plot.bar()\n", "test_sex_ratio = test_sex_value_counts['male']/test_sex_value_counts['female']\n", "plt.title(f'Test set: male vs female ratio: {test_sex_ratio:.2f}')\n", "\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, lets check that the relative number of passenger per class is similar between the train and test sets." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:38.404343Z", "start_time": "2020-05-01T17:12:38.078737Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAAEUCAYAAAAspncYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAofUlEQVR4nO3debhkVXnv8e9PGgGBBpEWRWmIAhpAQW3nARWNIWow4jUBxSlIRH2co0RDRKIGp2vivThgHNEQh4ByRSNBYxQVFVQ0YMCBQUSgmRq6QUF47x97HyzLOqd3V1fVOXXO9/M89bBr7VV7v2efptZ591p7rVQVkiRJkqQNd7v5DkCSJEmSppUJlSRJkiQNyYRKkiRJkoZkQiVJkiRJQzKhkiRJkqQhmVBJkiRJ0pBMqLToJPlCkmfPdxzaOEkeneSS+Y5DkrQ0JDkqycfmOw5NHxMqLQhJ1va8bk1yY8/7Z2zIsapq/6r6yLhi7ZdklySVZNmkzilJGr1RtkXt8b6S5NAxxPmcJKeP+riShuMfgFoQqmqrme0kFwKHVtVp/fWSLKuq30wyNo1Okk2q6pb5jkOSBunaFmk6+DeDJsUeKi1oM8O+krwmyWXAh5LcMcnnkqxOck27ffeez9x2R3DmLl6St7d1L0iy/xzne02SXyS5Psl5SfZry2+X5IgkP01yVZJPJtmu/dhX2/9e297FfGiHn+uoJJ9O8on2XN9NsnfP/plzXZ/k3CR/1rNv1yT/lWRNkiuTfKItT5J3Jrmi3feDJHu1+zZrr8HFSS5P8t4kW/Rd41e2n/1lkuf2nO9OSf5fkuuSfCfJG3vvjCa5d5L/SHJ1e82e3rPvw0nek+TzSdYBjxlwLbZL8qEkl7a/o8/Mcs1Gek0kqau52oAkmyf5WFt+bfs9uUOSNwGPBP5v2zb83wHHHfjZdt82ST7Qfif/ov3u3STJHwLvBR7aHvfajj/DV5L8Q5Jvt9+Hn+1px0jyqSSXtfu+mmTPnn1/0n7vXt/G8qq2fPs0bfC1bRvwtSS3a/ftmOTf0rTVFyR5Sc/xjmqv4UfbY56TZFXP/vsn+V6771Np2so39ux/UpLvt+f9RpL79uy7ME1b/gNgXQaMHkmyZ0+7dXmS185yzUZ6TbR4+QvWNLgLsB2wM3AYzb/bD7XvVwI3Ar/XUPV4MHAesD3wVuADSdJfKcm9gBcDD6yqrYEnABe2u18CPAXYF9gRuAY4tt33qPa/21bVVlX1zSQr2y/TlXPEdQDwqfZn+xfgM0k2bff9lKYh3gZ4A/CxJHdt9/09cCpwR+DuwP9py/+ojWV3YFvgz4Gr2n1vacv3AXYF7gb8XU8sd2nPdTfgL4Fjk9yx3XcssK6t8+z2NXPNtgT+o43/zsBBwLt7Gx3gYOBNwNbAoCEqxwN3APZsj/HOQRdrDNdEkrqaqw14Ns330k7AnYAXADdW1euArwEvbtuGFw847sDPtvs+AvyG5jv7fjTfZ4dW1Y/aet9sj7stQJKD2yRiLs8Cntf+DL8B3tWz7wvAbjTfw98FPt6z7wPAX7Vt417Al9vyVwKXACuAHYDXAtUmEP8POJumXdkPeFmSJ/Qc80+Bf6X5bj6Zth1PcnvgJODDNO3jCUDvDbT7Ax8E/qq9Zu8DTk6yWc+xDwKeSNMu/04PVZKtgdOAf2+vw67Al2a5XiO7JrMcX4tFVfnytaBeNEnM49rtRwM3AZvPUX8f4Jqe91+haXQAngP8pGffHWi+2O4y4Di7AlcAjwM27dv3I2C/nvd3BW6mGTa7S3vMZRvwMx4FnNHz/nbAL4FHzlL/+8AB7fZHgeOAu/fVeSxwPvAQ4HY95aFJiO7ZU/ZQ4IKea3xjb/ztdXgIsEn7c96rZ98bgdPb7T8HvtYXx/uA17fbHwY+Osd1uCtwK3DHAfseDVwyx2eHvia+fPnytb5XX1s0VxvwPOAbwH0HHOO29miWcwz8LM0f4r8GtugpOwj4z3b7OTPfwxvw83wFOKbn/R407esmA+pu27Zr27TvL6ZJYJb31Tsa+Cywa1/5g4GL+8r+BvhQu30UcFpfLDe2248CfgGkZ//pwBvb7fcAf9937POAfXt+b8+b4zocBHxvln1HAR+bZd9GXRNfi/tlD5Wmweqq+tXMmyR3SPK+JBcluY5myN22STaZ5fOXzWxU1Q3t5lb9larqJ8DLaL5Qr0jyr0l2bHfvDJzU9jpdS9O43kLT6A3r5z3nvpXmjtaOAEme1TOc4Vqau1/bt9VfTZMkfbsdJvG89hhfprnDdyxweZLjkiynuUt2B+CsnuP9e1s+46r63bt4N9BcoxU0fzD8vGdf7/bOwINnjtse+xk0vVmD6vfbCbi6qq6Zow4w8msiSRtirjbgeOCLwL+mGbr81p7RBusz22d3BjYFftlzzvfR9JRsjN7v44vac2yfZijhMWmGNF7Hb0dnzHzHHgj8CXBRmuHVM0Pb3wb8BDg1yc+SHNGW7wzs2Nc2vJbfbTMv69m+Adi8HZ63I/CLqurt1elvd17Zd+yd2s8Nqt9vJ5oRD3MawzXRImZCpWnQ31X+SuBewIOrajm/HXL3e8P4NvhEVf9SVY+g+cIumqFy0Hw5719V2/a8Nq+qXwyIr6udZjba4RF3By5NsjPwfprhh3eqZjjHf9P+fFV1WVU9v6p2pLk79u4ku7b73lVVD6AZPrc78NfAlTQ9UHv2xL5N9Tx8PYfVNMNC7t5TtlPP9s+B/+q7LltV1eE9dea6Pj8Htkuy7VxBjOGaSNKGmLUNqKqbq+oNVbUH8DDgSTRD62A97cMcn/05TQ/V9j3nW15VM8OpN7rdoRkyfzNNG3EwzTD0x9EMQdylrTPzHfudqjqAJqH7DPDJtvz6qnplVd0DeDLwijTPHv+cZhRE7/Xauqr+pEOMvwTu1jc0v7/deVPfse9QVSf01Flfu3PPDnGM+ppoETOh0jTamiZBuDbNA7WvH8VBk9wryWPbcdi/as8xMyPde4E3tX/Yk2RFkgPafatphq3dYwNP+YAkT23vyL2MpvE8A9iSpjFY3Z7ruTS9MTNx/q/8dhKOa9q6tyR5YJIHt3c317U/wy1t79f7gXcmuXN7jLv1jWUfqJoZ+U4Ejmp7Bu/Nb/9QAPgcsHuSQ5Js2r4emOah6fWqql/SjFF/d5rJRjZN8qgBVUd6TbrEJkk9Zm0DkjwmyX3aURLX0SQpM98zlzNH2zDbZ9vvxlOBdyRZnmZSjHsm2bfnuHdP87zRhnhmkj2S3IFmaNqn2+/5rWnaoKtoRjS8uSfG2yd5RpJtqurmNs5b2n1PSjMpUHrKbwG+DVyXZnKILdrenr2SPLBDjN9sj/HiJMva6/ygnv3vB17QfrcnyZZJnpjm2aguPgfcJcnL0kzYtHWSBw+oN+prokXMhErT6B+BLWjuqp1BM3xtFDYDjmmPexnNXaeZmX/+ieah2VOTXN+e98Fw2zDCNwFfb4cfPCTNpBRrM/ekFJ+leQbpGuAQ4Knt3cpzgXfQNCqXA/cBvt7zuQcC30qyto3ppVV1AbCcpqG5hmYox1XA29vPvIZmCMIZ7dCF02h6+bp4Mc3ductohqecQNPIUFXX0zwo/RfApW2dt9Bcy64Oofkj4n9ont16WX+FMV0TSepq1jaAZojzp2n+eP4R8F/Ax3o+97Q0M5i+i98312efBdweOJfmO+zTNM9uQTMBwjnAZUmuBGj/wD9nPT/H8TTPtl4GbE4z2QY0z6FeRPPs0rntz9frEODCtv14AfDMtnw3mvZkLc3387ur6ittkvZkmmecL6BpV/+Zpi2ZU1XdBDyVZoKka9tzfY7ftjtnAs+nGc59DU3b9pz1Hbfn+NcDj2/juwz4MQNmoGXE16RrfJpO+d0hqpImIclRNA+sPnN9dReaJG+hmdTj2eutLElaEJJ8hWbChX+e71g2VJJvAe+tqg/NdyzSIPZQSZpTmnWm7tsOrXgQzV3Dk+Y7LknS4pRk3yR3aYf8PRu4L6MbjSKN3O8tdiZJfbamGea3I82QvHfQDFeUJGkc7kUzycNWNDPyPa19rkxakBzyJ0mSJElDcsifJEmSJA3JhEqSJEmShrSonqHafvvta5dddpnvMCRJY3LWWWddWVUr5juOQWyDJGnxmqv9WVQJ1S677MKZZ54532FIksYkyUXzHcNsbIMkafGaq/1xyJ8kSZIkDcmESpIkSZKGZEIlSZIkSUMyoZIkSZKkIZlQSZIkSdKQTKgkSZIkaUgmVJIkSZI0JBMqSZIkSRqSCZUkSZIkDWnZfAewmOxyxCnzHcK8ufCYJ853CJK0ZNn+SNL8sYdKkiRJkoZkQiVJkiRJQzKhkiQtekm2S3JSknVJLkpy8Cz1npPkliRre16Pnmy0kqRp4jNUkqSl4FjgJmAHYB/glCRnV9U5A+p+s6oeMcngJEnTyx4qSdKilmRL4EDgyKpaW1WnAycDh8xvZJKkxcCESpK02O0O3FJV5/eUnQ3sOUv9+yW5Msn5SY5MMutojiSHJTkzyZmrV68eZcySpClhQiVJWuy2Atb0la0Bth5Q96vAXsCdaXq1DgL+erYDV9VxVbWqqlatWLFiROFKkqaJCZUkabFbCyzvK1sOXN9fsap+VlUXVNWtVfVD4GjgaROIUZI0pUyoJEmL3fnAsiS79ZTtDQyakKJfARlLVJKkRcGESpK0qFXVOuBE4OgkWyZ5OHAAcHx/3ST7J9mh3b43cCTw2UnGK0maLiZUkqSl4IXAFsAVwAnA4VV1TpKV7VpTK9t6+wE/SLIO+DxNIvbmeYlYkjQVXIdKkrToVdXVwFMGlF9MM2nFzPtXAa+aXGSSpGlnD5UkSZIkDcmESpIkSZKGZEIlSZIkSUOaaEKVZLskJyVZl+SiJAfPUu85SW5pHxSeeT16krFKkiRJ0vpMelKKY4GbgB2AfYBTkpxdVYPWAvlmVT1iksFJkiRJ0oaYWA9Vki2BA4Ejq2ptVZ0OnAwcMqkYJEmSJGmUJjnkb3fglqo6v6fsbGDPWerfL8mVSc5PcmSSgb1pSQ5LcmaSM1evXj3qmCVJkiRpVpNMqLYC1vSVrQG2HlD3q8BewJ1perUOAv560EGr6riqWlVVq1asWDHCcCVJkiRpbpNMqNYCy/vKlgPX91esqp9V1QVVdWtV/RA4GnjaBGKUJEmSpM4mmVCdDyxLsltP2d7AoAkp+hWQsUQlSZIkSUOaWEJVVeuAE4Gjk2yZ5OHAAcDx/XWT7J9kh3b73sCRwGcnFaskSZIkdTHphX1fCGwBXAGcABxeVeckWdmuNbWyrbcf8IMk64DP0yRib55wrJIkSZI0p4muQ1VVVwNPGVB+Mc2kFTPvXwW8anKRSZIkSdKGG7qHKsmmowxEkiRJkqZNp4QqyUuSHNjz/gPAjUnOS3KvsUUnSZIkSQtY1x6qlwCrAZI8Cng6cDDwfeAdY4lMkiRJkha4rs9Q3Q24sN1+MvCpqvpkkh8CXxtHYJIkSZK00HXtoboOWNFuPx74Urt9M7D5qIOSJEmSpGnQtYfqVOD9Sb4H7Ap8oS3fE7hgHIFJkiRJ0kLXtYfqRcDpwPbA09rpzwHuT7OelCRJkiQtOevtoUqyDHgmcExVXdq7r6peP67AJEmSJGmhW28PVVX9Bngb4LpTkiRJktSj65C/M4AHjDMQSZIkSZo2XSeleD/w9iQrgbOAdb07q+q7ow5MkiRJkha6rgnVv7T//d8D9hWwyWjCkSRJkqTp0TWh+oOxRiFJkiRJU6hTQlVVF407EEmSJEmaNl0npSDJ/kk+l+TcJDu1ZYcm2W984UmSJEnSwtUpoUryDOCTwI9phv/NTKG+CfDq8YQmSZIkSQtb1x6qVwPPr6qXA7/pKT8D2GfUQUmSJEnSNOiaUO0GfHNA+Vpg+ejCkSRJkqTp0TWhuhTYfUD5o4Cfji4cSZIkSZoeXROq44B3JXl4+36nJM8G3gq8ZyyRSZIkSdIC1ymhqqq3AicC/wFsCfwn8F7gvVV17PjCkyRp4yXZLslJSdYluSjJwR0+8+UklaTrmo2SpCWocyNRVa9L8iZgD5pE7NyqWju2yCRJGp1jgZuAHWgmUzolydlVdc6gyu3stiZSkqT12qDGoqpuAM4cUyySJI1cki2BA4G92huBpyc5GTgEOGJA/W2A1wPPYvCETJIk3aZTQpXkP4EasKuAXwE/AT5SVd8dYWySJI3C7sAtVXV+T9nZwL6z1H8zzfPBl63vwEkOAw4DWLly5UaGKUmaRl0npfgRcH/grsAl7euubdkVwCOAbyXZbxxBSpK0EbYC1vSVrQG27q+YZBXwcOD/dDlwVR1XVauqatWKFSs2OlBJ0vTpOuTvV8CHq+plvYVJ3gFUVT0gyT8BbwS+NNoQJUnaKIPWTFwOXN9bkOR2wLuBl1bVb5JMKDxJ0jTr2kP1bJoHevu9D3huu30czYQVkiQtJOcDy5Ls1lO2N9A/IcVyYBXwiSSXAd9pyy9J8sjxhylJmkZde6gC7An8uK98j3YfwM3ArSOKS5KkkaiqdUlOBI5OcijNLH8HAA/rq7oG2LHn/U7At4EHAKsnEKokaQp1Tag+Anygvbv3HZrJKB4EvAb4cFtnX+C/Rx2gJEkj8ELggzTP/V4FHF5V5yRZCZwL7FFVF9MzEUWSzdvNy6vqN5MOWJI0HbomVK8CLgdeDtylLbsMeBvw9vb9F4EvjDQ6SZJGoKquBp4yoPximkkrBn3mQn47CkOSpIE6PUNVVbdU1TFVtSOwLbBtVe1YVW+pqlvaOhdX1SVzHceV6iVJkiQtJhucpFTVdRtxPleqlyRJkrRodOqhanuW3pPk/CTXJrmu99XxGDMr1R9ZVWur6nRgZqX6QfVnVqp/dbcfRZIkSZImq2vvzweA+9FMjX4pzaQUG2osK9W7Sr0kSZKk+dI1odoPeHxVfWsjzjXMSvUvBe4+10Gr6jiaRI9Vq1YNk+hJkiRJ0lC6Lux7Bc1K8xtjqJXqN/KckiRJkjQ2XROq19EsiDhwatmOXKlekiRJ0qLSdcjf3wK7AFckuQi4uXdnVd13fQdwpXpJkiRJi03XhOrTIzqfK9VLkiRJWjQ6JVRV9YZRnMyV6iVJkiQtJl2foSLJ5kmeluQ1SbZty+6ZZLuxRSdJkiRJC1inHqokuwKn0fQibQt8CrgWOLx9f+hYopMkSZKkBaxrD9U/AqcCOwA39pSfDDxmxDFJkiRJ0lToOinFw4CHVNUtye88znQxvzsjnyRJkiQtGZ2foQI2HVC2kmaac0mSJElacromVKcCr+h5X0mWA28AThl5VJIkSZI0BboO+XsF8J9JzgM2Bz4B7ApcDjx9TLFJkiRJ0oLWdR2qS5PsAxwE3J+mZ+s44ONVdeNcn5UkSZKkxaprDxVt4vTB9iVJkiRJS16nZ6iSPD3JH/W8/7sklyT5YpK7ji88SZIkSVq4uk5KcdTMRpL7A68F3kUz8987Rh+WJEmSJC18XYf87Qyc127/GfCZqnprklOBL44lMkmSJEla4Lr2UP0K2Lrd3g84rd1e01MuSZIkSUtK1x6qrwHvSHI6sAp4Wlu+O/DzcQQmSZIkSQtd1x6qFwM30SRSL6iqS9vy/XHInyRJkqQlqus6VJcATx5Q/rJRByRJkiRJ06LrtOkrkqzoeX+fJG9MctD4QpMkSZKkha3rkL9P0vZQJdke+CrNbH/vTfLKMcUmSZIkSQta14TqvsAZ7fbTgJ9U1Z7As4C/GkdgkiRJkrTQdU2otgDWttuPA05ut78L7DTqoCRJkiRpGnRNqH4MPDXJTsAfAae25TsA144hLkmSJEla8LomVG8A3gJcCJxRVd9qy58AfG8McUmSJEnSgtcpoaqqE4GVNIv6/nHPrtOAV4whLkmSRibJdklOSrIuyUVJDp6l3l8kOS/JmiRXJPlIkuWTjleSND269lBRVZdX1feq6taesm9V1f+MJzRJkkbmWJoF6ncAngG8J8meA+p9HXh4VW0D3INmvcY3TixKSdLU6bSwL0CS3Wlm+FsJ3L53X1U9b8RxSZI0Ekm2BA4E9qqqtcDpSU4GDgGO6K1bVT/v+/gtwK4TCVSSNJU6JVRJngj8G83zUg8AvgPcE9gM+NrYopMkaePtDtxSVef3lJ0N7DuocpJHAKcAy4EbaNZdlCRpoK5D/o4G3lBVDwV+TXNXbxeaZ6i+MpbIJEkaja2ANX1la4CtB1WuqtPbIX93B95GMyHTQEkOS3JmkjNXr149onAlSdOka0J1L+AT7fbNwB2q6lc0idbLxhCXJEmjspamt6nXcuD6uT5UVb8A/h341znqHFdVq6pq1YoVKzY6UEnS9OmaUF0PbN5u/5LfjidfBtxx1EFJkjRC5wPLkuzWU7Y3cE6Hzy6jGeIuSdJAXROqbwGPaLdPAd6R5PXAh4BvjiMwSZJGoarWAScCRyfZMsnDgQOA4/vrJnlGkpVp7Ay8CfjSZCOWJE2TrgnVK4Az2u2jgFNpZkz6CXBo15O5DogkaZ68ENgCuAI4ATi8qs5pk6e1SVa29fYAvkEzTPDrwHnA8+cjYEnSdOg0y19V/axn+wbg8CHP17sOyD7AKUnOrqr+YRcz64BcmWQr4H0064C8ZMjzSpKWsKq6GnjKgPKLaSatmHn/OuB1k4tMkjTtOq9DBZDksTR37wDOraovb8BnXQdEkiRJ0qLSdR2qP6AZf34f4NK2eMckPwQO7O3BmoPrgEiSJElaVLo+Q/UB4DrgHlW1sqpWAvcArgX+ueMxxrIOiGuASJIkSZovXROqhwIvaceaA7eNO395u6+LsawD4hogkiRJkuZL14TqYprZkfptDvQ/7zQb1wGRJEmStKh0TaheCbwryUOSbNK+HgL8Y7tvvVwHRJIkSdJi03WWvxOAzWimM7+1Lbsdzex7H09yW8Wqmmu9qBcCH6RZB+QqetYBAc4F9miHEu4BvAW4I3AN8HngbzrGKkmStOjtcsQp8x3CvLnwmCfOdwjSbbomVC8exclcB0SSJEnSYtJ1Yd+PjDsQSZIkSZo2XZ+hkiRJkiT1MaGSJEmSpCGZUEmSJEnSkGZNqGamLZ9kMJIkSZI0TebqoboAWAGQ5MtJtp1IRJIkSZI0JeZKqK4Htm+3Hw1sOvZoJEmSJGmKzDVt+mnAl5P8qH1/UpKbBlWsqseOPDJJkiRJWuDmSqgOAZ4H7ArsC5wH3DCJoCRJkiRpGsyaUFXVjcCxAEn2AV5ZVddOJixJkiRJWvjm6qG6TVU9ZmY7yVZNUa0bW1SSJEmSNAU6r0OV5EVJLgbWANcluSjJC8cXmiRJkiQtbJ16qJK8Fvgb4O3A6W3xI4FjkiyvqmPGFJ8kSZIkLVidEirgBcBhVXVCT9mXkvwYeDNgQiVJkiRpyek65O/OwHcGlH8b2GF04UiSJEnS9OiaUJ0PHDyg/GCa6dQlSZIkacnpOuTvKOCTSR4FfB0o4BE061P9r/GEJkmSJEkLW9dp009M8mDg5cCTgADnAg+qqu+NMT5pwdvliFPmO4R5ceExT5zvECRJkuZd1x4qquos4JljjEWSJEmSpkrndagkSZIkSb/LhEqSJEmShmRCJUmSJElDMqGSJEmSpCF1npRCkiRJ0vxaqrMLw8KdYbhzQpXkz4H9gDvT17NVVX864rgkSZIkacHrNOQvyduAjwG7ANcCV/W9JElasJJsl+SkJOuSXJTk4FnqPTvJWUmuS3JJkrcmcTSHJGlWXRuJZwEHVdWnxxmMJEljcixwE7ADsA9wSpKzq+qcvnp3AF4GfAtYAZwMvAo4ZmKRSpKmSteE6nbA98cYhyRJY5FkS+BAYK+qWgucnuRk4BDgiN66VfWenre/SPJx4DETC1aSNHW6zvJ3HPDMcQYiSdKY7A7cUlXn95SdDezZ4bOPAvp7sSRJuk3XHqptgYOTPB74AXBz786qesmI45KkBcsZlqbOVsCavrI1wNZzfSjJc4FVwKFz1DkMOAxg5cqVGxelJGkqde2h2oNmyN9NwL2B+/S89up6Mh8KliTNg7XA8r6y5cD1s30gyVNonpvav6qunK1eVR1XVauqatWKFStGEaskacp0SlKqalTjx30oWJI0aecDy5LsVlU/bsv2ZpahfEn+GHg/8MSq+uGEYpQkTakN6vVJsjmwK1DAT6vqVxvwWR8KliRNXFWtS3IicHSSQ2lu6B0APKy/bpLHAh8H/qyqvj3RQCVJU6nrOlSbtmtRXUPzIO8PgWvaoXibdjyXDwVLkubLC4EtgCuAE4DDq+qcJCuTrE0y8wDUkcA2wOfb8rVJvjBPMUuSpkDXHqq3AAcBLwBOb8seCfwDTVL2qg7HGMtDwT4QLElan6q6GnjKgPKLadqnmfeOhpAkbZCuCdXBwPOq6vM9ZT9Nshr4Z7olVBvzUPDjZnsouKqOo5nWnVWrVlWHOCRJkiRpJLrO8rcN8NMB5T+lmVK9i9seCu4p6/JQ8JN9KFiSJEnSQtQ1oTobGLTW1EtpplNfr6paB8w8FLxlkofTPBR8fH/dnoeCD/ShYEmSJEkLVdchf6+meUD38cA3aWb5eyiwI7D/BpzvhcAHaR4Kvoqeh4KBc4E92vHsvQ8Fz3z2a1W1IeeSJEmSpLHqug7VV5PsDryIZmHfAJ8C3l1Vl3Y9mQ8FS5IkSVpMOq9D1SZOrxtjLJIkSZI0VWZNqJLcH/h+Vd3abs+qqr478sgkSZIkaYGbq4fqTOAuNM87nUnz3FQG1Ctgk9GHJkmSJEkL21wJ1R8Aq3u2JUmSJEk9Zk2oquqi3rfAz6vq9xbObWfokyRJkqQlp+s6VBcAK/oLk9yp3SdJkiRJS07XhCo0vVT9tgJ+NbpwJEmSJGl6zDltepJ3tZsF/EOSG3p2bwI8CPj+eEKTJEmSpIVtfetQ3af9b4A/BG7q2XcT8F3g7WOIS5IkSZIWvDkTqqp6DECSDwEvrarrJhKVJEmSJE2Brs9QvRZY3l+Y5O5JdhhtSJIkSZI0HbomVB8F9h9Q/gTg+NGFI0mSJEnTo2tC9UDgqwPKvwasGl04kiRJkjQ9uiZUy4DNBpRvPku5JEmSJC16XROqbwGHDyh/EfCd0YUjSZIkSdNjfdOmz3gd8OUkewNfasseC9wPeNw4ApMkSZKkha5TD1VVnQE8FPgZ8FTgQOAC4KFV9Y3xhSdJkiRJC1fXHiqq6mzgmWOMRZIkSZKmSueEakaSuwC37y2rqotHFpEkSZIkTYlOCVWSbYB3AU+nL5lqbTLKoCRJkiRpGnSd5e/twN7AU4BfAQcDfw1cAvz5WCKTJEmSpAWu65C//YGDquprSW4BzqqqTyT5JfBXwKfHFqEkSZIkLVBde6i2BS5qt9cAd2q3vwk8bMQxSZIkSdJU6JpQ/RS4R7v9I+AvkoRmCvWrxxGYJEmSJC10XROqDwP3bbePoRnmdxPwNuAtow9LkiRJkha+Ts9QVdU7e7a/nOTewCrgx1X1w3EFJ0mSJEkL2XoTqiSbAqcDz6qq8+C2dadce0qSJEnSkrbeIX9VdTPwB0CNPxxJkiRJmh5dn6H6CPD8cQYiSdK4JNkuyUlJ1iW5KMnBs9TbK8kXk1yZxBuJkqT16roO1ZbAM5I8HjgLWNe7s6peMurAJEkaoWNpJlPaAdgHOCXJ2VV1Tl+9m4FPAu8GPjPJACVJ06lrD9UfAt8FrqGZPv0+Pa+9up7MO4SSpElLsiVwIHBkVa2tqtOBk4FD+utW1XlV9QGgP9GSJGmgOXuoktwX+O+qesyIzucdQknSpO0O3FJV5/eUnQ3su7EHTnIYcBjAypUrN/ZwkqQptL4equ8B28+8SXJKkrsOcyLvEEqS5slWwJq+sjXA1ht74Ko6rqpWVdWqFStWbOzhJElTaH0JVfrePwrYYshzzXaHcM8hjydJUhdrgeV9ZcuB6+chFknSItP1GapRGMsdwiSHJTkzyZmrV6/emENJkhan84FlSXbrKdsbR0FIkkZgfQlV8fvrTw07ScRY7hA63EKSNJeqWgecCBydZMskDwcOAI7vr5vG5sDt2/ebJ9lsogFLkqbK+qZND/CxJL9u328OvD/JDb2VqupPO5zrtjuEVfXjtsw7hJKkSXgh8EHgCuAq4PCqOifJSuBcYI+quhjYGbig53M3AhcBu0w2XEnStFhfQvWRvvcfG/ZEVbUuycwdwkNpZvk7AHhYf90kATaj5w5hc4j6dX9dSZLWp6quBp4yoPximiHpM+8v5PefH5YkaVZzJlRV9dwRn887hJIkSZIWjfX1UI2UdwglSZIkLSaTnOVPkiRJkhYVEypJkiRJGpIJlSRJkiQNyYRKkiRJkoZkQiVJkiRJQzKhkiRJkqQhmVBJkiRJ0pBMqCRJkiRpSCZUkiRJkjQkEypJkiRJGpIJlSRJkiQNyYRKkiRJkoZkQiVJkiRJQzKhkiRJkqQhmVBJkiRJ0pBMqCRJkiRpSCZUkiRJkjQkEypJkiRJGpIJlSRJkiQNyYRKkiRJkoZkQiVJkiRJQzKhkiRJkqQhmVBJkiRJ0pBMqCRJkiRpSCZUkiRJkjQkEypJkiRJGpIJlSRJkiQNyYRKkiRJkoZkQiVJkiRJQzKhkiRJkqQhmVBJkiRJ0pAmmlAl2S7JSUnWJbkoycFz1H15ksuSrEnywSSbTTJWSdLiYfsjSRqXSfdQHQvcBOwAPAN4T5I9+ysleQJwBLAfsAtwD+ANkwtTkrTI2P5IksZiYglVki2BA4Ejq2ptVZ0OnAwcMqD6s4EPVNU5VXUN8PfAcyYVqyRp8bD9kSSNU6pqMidK7gd8o6q26Cl7FbBvVT25r+7ZwJur6hPt++2B1cD2VXVVX93DgMPat/cCzhvfT7GgbQ9cOd9BaOL8vS9NS/n3vnNVrdiQD4yr/Wn32wY1lvK/yaXM3/vSs5R/57O2P8smGMRWwJq+sjXA1h3qzmxvDfxOg1ZVxwHHjSjGqZXkzKpaNd9xaLL8vS9N/t432FjaH7ANmuG/yaXJ3/vS4+98sEk+Q7UWWN5Xthy4vkPdme1BdSVJmovtjyRpbCaZUJ0PLEuyW0/Z3sA5A+qe0+7rrXf5oOEWkiSth+2PJGlsJpZQVdU64ETg6CRbJnk4cABw/IDqHwX+MskeSe4I/C3w4UnFOqWW/JCTJcrf+9Lk730D2P5MhP8mlyZ/70uPv/MBJjYpBTTrgAAfBB5PMxb9iKr6lyQrgXOBParq4rbuK4DXAFsA/wa8oKp+PbFgJUmLhu2PJGlcJppQSZIkSdJiMumFfSVJkiRp0TChkiRJkqQhmVBNoST3S/K0JHdIskmSFyd5Z5InzXdskkYrycokf5Zk9wH7DpqPmLS02QZJS4dtUDcmVFMmyV8CnwfeBXyV5sHpPWkWozwhyfPmMTzNk/aPmr+b7zg0Wkn+GPhv4Cjg+0nenWSTnirvm5fAtGTZBqmf7c/iZRvUnZNSTJkk/wP8KRDgR8Ajquob7b4nAG+tqr3nOIQWoSSbATdU1SbrraypkeQs4O+q6pQkOwAfA34NPLWqbkpyfVVtPb9RaimxDVI/25/FyzaoOxOqKZNkTVVt026vA7aq9peY5HbA1VW17TyGqDFJ8sE5di8DnmGDtrj0/v/evl9G06BtT/NH7eU2Zpok26ClyfZnabIN6s4hf9NnXZJN2+0P1+9mxFsAt85DTJqMg4EbgV8MeF0yj3FpfK5JstPMm6r6DXAQcDFwGuAfMJo026ClyfZnabIN6mjZfAegDfYlYFfgR1X1or59TwJ+MPmQNCE/BL5YVSf370iyOXDE5EPSmJ0GPBc4eqag/QP2eUneCzxkvgLTkmUbtDTZ/ixNtkEdOeRvEUmygubf+pXzHYtGL8mLgF9U1WcG7NsE+NuqesPEA9PYJLk9sKyqbphl/8qqunjCYUkD2QYtXrY/S5NtUHcmVJIkSZI0JJ+hkiRJkqQhmVBJkiRJ0pBMqCRJkiRpSCZUkiRJkjQkEypJkiRJGtL/Bz9dTgfmbrzQAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Check the class balance\n", "train_pclass_value_counts = df_train.pclass.value_counts() / len(df_train)\n", "test_pclass_value_counts = df_test.pclass.value_counts() / len(df_test)\n", "\n", "plt.figure(figsize=(12, 4))\n", "\n", "plt.subplot(121)\n", "plt.title('Train set: passenger class')\n", "plt.ylabel('Fraction of passengers')\n", "train_pclass_value_counts.plot.bar()\n", "\n", "plt.subplot(122)\n", "plt.title('Test set: passenger class')\n", "test_pclass_value_counts.plot.bar()\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the above diagnostics, we are satisfied that, at least in these few categories, the train and test are similar enough, and we can move forward.\n", "\n", "## Feature engineering\n", "\n", "In this section we will use `vaex` to create meaningful features that will be used to train a classification model. To start with, let's get a high level overview of the training data." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:38.527108Z", "start_time": "2020-05-01T17:12:38.408602Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
pclasssurvivednamesexagesibspparchticketfarecabinembarkedboatbodyhome_dest
data_typeint64boolstringstringfloat64int64int64stringfloat64stringstringstringfloat64string
count104710471047104784110471047104710462331046380102592
NA000020600018141667945455
mean2.30754536771728750.3744030563514804----29.5652992865636080.51002865329512890.3982808022922636--32.92609101338429------159.6764705882353--
std0.8332690.483968----14.1619531.0713090.890852--50.678261------96.220759--
min1False----0.166700--0.0------1.0--
max3True----80.089--512.3292------327.0--
\n", "
" ], "text/plain": [ " pclass survived name sex \\\n", "data_type int64 bool string string \n", "count 1047 1047 1047 1047 \n", "NA 0 0 0 0 \n", "mean 2.3075453677172875 0.3744030563514804 -- -- \n", "std 0.833269 0.483968 -- -- \n", "min 1 False -- -- \n", "max 3 True -- -- \n", "\n", " age sibsp parch ticket \\\n", "data_type float64 int64 int64 string \n", "count 841 1047 1047 1047 \n", "NA 206 0 0 0 \n", "mean 29.565299286563608 0.5100286532951289 0.3982808022922636 -- \n", "std 14.161953 1.071309 0.890852 -- \n", "min 0.1667 0 0 -- \n", "max 80.0 8 9 -- \n", "\n", " fare cabin embarked boat body \\\n", "data_type float64 string string string float64 \n", "count 1046 233 1046 380 102 \n", "NA 1 814 1 667 945 \n", "mean 32.92609101338429 -- -- -- 159.6764705882353 \n", "std 50.678261 -- -- -- 96.220759 \n", "min 0.0 -- -- -- 1.0 \n", "max 512.3292 -- -- -- 327.0 \n", "\n", " home_dest \n", "data_type string \n", "count 592 \n", "NA 455 \n", "mean -- \n", "std -- \n", "min -- \n", "max -- " ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_train.describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Imputing\n", "\n", "We notice that there are 3 columns that have missing data, so our first task will be to impute the missing values with suitable substitutes. This is our strategy:\n", "\n", "- age: impute with the median age value\n", "- fare: impute with the mean fare of the 5 most common values.\n", "- cabin: impute with \"M\" for \"Missing\"\n", "- Embarked: Impute with with the most common value." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:38.546371Z", "start_time": "2020-05-01T17:12:38.529144Z" } }, "outputs": [], "source": [ "# Handle missing values\n", "\n", "# Age - just do the median of the training set for now\n", "fill_age = df_train.percentile_approx(expression='age', percentage=50.0)\n", "# For some numpy versions the `np.percentile` method is broken and returns nan. \n", "# As a failsafe, in those cases fill with the mean.\n", "if np.isnan(fill_age):\n", " fill_age = df_train.mean(expression='age')\n", "df_train['age'] = df_train.age.fillna(value=fill_age)\n", "\n", "# Fare: the mean of the 5 most common ticket prices.\n", "fill_fares = df_train.fare.value_counts(dropna=True)\n", "fill_fare = fill_fares.iloc[:5].index.values.mean()\n", "df_train['fare'] = df_train.fare.fillna(value=fill_fare)\n", "\n", "# Cabing: this is a string column so let's mark it as \"M\" for \"Missing\"\n", "df_train['cabin'] = df_train.cabin.fillna(value='M')\n", "\n", "# Embarked: Similar as for Cabin, let's mark the missing values with \"U\" for unknown\n", "fill_embarked = df_train.embarked.value_counts(dropna=True).index[0]\n", "df_train['embarked'] = df_train.embarked.fillna(value=fill_embarked)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### String processing\n", "\n", "Next up, let's engineer some new, more meaningful features out of the \"raw\" data that is present in the dataset. \n", "Starting with the name of the passengers, we are going to extract the titles, as well as we are going to count the number of words a name contains. These features can be a loose proxy to the age and status of the passengers." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:38.587351Z", "start_time": "2020-05-01T17:12:38.548452Z" } }, "outputs": [ { "data": { "text/plain": [ "Expression = name_title\n", "Length: 1,047 dtype: large_string (column)\n", "------------------------------------------\n", " 0 Mr\n", " 1 Mr\n", " 2 Mrs\n", " 3 Miss\n", " 4 Mr\n", " ... \n", "1042 Master\n", "1043 Mrs\n", "1044 Master\n", "1045 Mr\n", "1046 Mr" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Expression = name_num_words\n", "Length: 1,047 dtype: int64 (column)\n", "-----------------------------------\n", " 0 3\n", " 1 4\n", " 2 5\n", " 3 4\n", " 4 4\n", " ... \n", "1042 4\n", "1043 6\n", "1044 4\n", "1045 4\n", "1046 3" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Engineer features from the names\n", "\n", "# Titles\n", "df_train['name_title'] = df_train['name'].str.replace('.* ([A-Z][a-z]+)\\..*', \"\\\\1\", regex=True)\n", "display(df_train['name_title'])\n", "\n", "# Number of words in the name\n", "df_train['name_num_words'] = df_train['name'].str.count(\"[ ]+\", regex=True) + 1\n", "display(df_train['name_num_words'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the cabin colum, we will engineer 3 features:\n", " - \"deck\": extacting the deck on which the cabin is located, which is encoded in each cabin value;\n", " - \"multi_cabin: a boolean feature indicating whether a passenger is allocated more than one cabin\n", " - \"has_cabin\": since there were plenty of values in the original cabin column that had missing values, we are just going to build a feature which tells us whether a passenger had an assigned cabin or not." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:38.747634Z", "start_time": "2020-05-01T17:12:38.594540Z" } }, "outputs": [ { "data": { "text/plain": [ "Expression = deck\n", "Length: 1,047 dtype: string (column)\n", "------------------------------------\n", " 0 M\n", " 1 B\n", " 2 M\n", " 3 M\n", " 4 M\n", " ... \n", "1042 M\n", "1043 M\n", "1044 M\n", "1045 B\n", "1046 M" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Expression = multi_cabin\n", "Length: 1,047 dtype: int64 (column)\n", "-----------------------------------\n", " 0 0\n", " 1 0\n", " 2 0\n", " 3 0\n", " 4 0\n", " ... \n", "1042 0\n", "1043 0\n", "1044 0\n", "1045 1\n", "1046 0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Expression = has_cabin\n", "Length: 1,047 dtype: int64 (column)\n", "-----------------------------------\n", " 0 1\n", " 1 1\n", " 2 1\n", " 3 1\n", " 4 1\n", " ... \n", "1042 1\n", "1043 1\n", "1044 1\n", "1045 1\n", "1046 1" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Extract the deck\n", "df_train['deck'] = df_train.cabin.str.slice(start=0, stop=1)\n", "display(df_train['deck'])\n", "\n", "# Passengers under which name have several rooms booked, these are all for 1st class passengers\n", "df_train['multi_cabin'] = ((df_train.cabin.str.count(pat='[A-Z]', regex=True) > 1) &\\\n", " ~(df_train.deck == 'F')).astype('int')\n", "display(df_train['multi_cabin'])\n", "\n", "# Out of these, cabin has the most missing values, so let's create a feature tracking if a passenger had a cabin\n", "df_train['has_cabin'] = df_train.cabin.notna().astype('int')\n", "display(df_train['has_cabin'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### More features\n", "\n", "There are two features that give an indication whether a passenger is travelling alone, or with a famly. \n", "These are the \"sibsp\" and \"parch\" columns that tell us the number of siblinds or spouses and the number of parents or children each passenger has on-board respectively. We are going to use this information to build two columns:\n", " - \"family_size\" the size of the family of each passenger;\n", " - \"is_alone\" an additional boolean feature which indicates whether a passenger is traveling without their family. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:38.813132Z", "start_time": "2020-05-01T17:12:38.750219Z" } }, "outputs": [ { "data": { "text/plain": [ "Expression = family_size\n", "Length: 1,047 dtype: int64 (column)\n", "-----------------------------------\n", " 0 1\n", " 1 1\n", " 2 3\n", " 3 4\n", " 4 1\n", " ... \n", "1042 8\n", "1043 2\n", "1044 3\n", "1045 2\n", "1046 1" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "Expression = is_alone\n", "Length: 1,047 dtype: int64 (column)\n", "-----------------------------------\n", " 0 0\n", " 1 0\n", " 2 0\n", " 3 0\n", " 4 0\n", " ... \n", "1042 0\n", "1043 0\n", "1044 0\n", "1045 0\n", "1046 0" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Size of family that are on board: passenger + number of siblings, spouses, parents, children. \n", "df_train['family_size'] = (df_train.sibsp + df_train.parch + 1)\n", "display(df_train['family_size'])\n", "\n", "# Whether or not a passenger is alone\n", "df_train['is_alone'] = (df_train.family_size == 0).astype('int')\n", "display(df_train['is_alone'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, let's create two new features:\n", " - age $\\times$ class\n", " - fare per family member, i.e. fare $/$ family_size" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:38.831478Z", "start_time": "2020-05-01T17:12:38.823592Z" } }, "outputs": [], "source": [ "# Create new features\n", "df_train['age_times_class'] = df_train.age * df_train.pclass\n", "\n", "# fare per person in the family\n", "df_train['fare_per_family_member'] = df_train.fare / df_train.family_size" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Modeling (part 1): gradient boosted trees\n", "\n", "Since this dataset contains a lot of categorical features, we will start with a tree based model. This we will gear the following feature pre-processing towards the use of tree-based models.\n", "\n", "### Feature pre-processing for boosted tree models\n", "\n", "The features \"sex\", \"embarked\", and \"deck\" can be simply label encoded. The feature \"name_tite\" contains certain a larger degree of cardinality, relative to the size of the training set, and in this case we will use the Frequency Encoder." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:38.983682Z", "start_time": "2020-05-01T17:12:38.833258Z" } }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
# pclass survived name sex age sibsp parch ticket fare cabin embarked boat body home_dest name_title name_num_words deck multi_cabin has_cabin family_size is_alone age_times_class fare_per_family_member label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title
0 3 False Stoytcheff, Mr. Ilia male 19.0 0 0 349205 7.8958 M S -- nan -- Mr 3 M 0 1 1 0 57.0 7.8958 1 1 0 0.5787965616045845
1 1 False Payne, Mr. Vivian Ponsonby male 23.0 0 0 12749 93.5 B24 S -- nan Montreal, PQ Mr 4 B 0 1 1 0 23.0 93.5 1 1 1 0.5787965616045845
2 3 True Abbott, Mrs. Stanton (Rosa Hunt) female35.0 1 1 C.A. 267320.25 M S A nan East Providence, RI Mrs 5 M 0 1 3 0 105.0 6.75 0 1 0 0.1451766953199618
3 2 True Hocking, Miss. Ellen "Nellie" female20.0 2 1 29105 23.0 M S 4 nan Cornwall / Akron, OH Miss 4 M 0 1 4 0 40.0 5.75 0 1 0 0.20152817574021012
4 3 False Nilsson, Mr. August Ferdinand male 21.0 0 0 350410 7.8542 M S -- nan -- Mr 4 M 0 1 1 0 63.0 7.8542 1 1 0 0.5787965616045845
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1,0423 False Goodwin, Master. Sidney Leonard male 1.0 5 2 CA 2144 46.9 M S -- nan Wiltshire, England Niagara Falls, NYMaster 4 M 0 1 8 0 3.0 5.8625 1 1 0 0.045845272206303724
1,0433 False Ahlin, Mrs. Johan (Johanna Persdotter Larsson)female40.0 1 0 7546 9.475 M S -- nan Sweden Akeley, MN Mrs 6 M 0 1 2 0 120.0 4.7375 0 1 0 0.1451766953199618
1,0443 True Johnson, Master. Harold Theodor male 4.0 1 1 347742 11.1333 M S 15 nan -- Master 4 M 0 1 3 0 12.0 3.7111 1 1 0 0.045845272206303724
1,0451 False Baxter, Mr. Quigg Edmond male 24.0 0 1 PC 17558 247.5208B58 B60C -- nan Montreal, PQ Mr 4 B 1 1 2 0 24.0 123.7604 1 0 1 0.5787965616045845
1,0463 False Coleff, Mr. Satio male 24.0 0 0 349209 7.4958 M S -- nan -- Mr 3 M 0 1 1 0 72.0 7.4958 1 1 0 0.5787965616045845
" ], "text/plain": [ "# pclass survived name sex age sibsp parch ticket fare cabin embarked boat body home_dest name_title name_num_words deck multi_cabin has_cabin family_size is_alone age_times_class fare_per_family_member label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title\n", "0 3 False Stoytcheff, Mr. Ilia male 19.0 0 0 349205 7.8958 M S -- nan -- Mr 3 M 0 1 1 0 57.0 7.8958 1 1 0 0.5787965616045845\n", "1 1 False Payne, Mr. Vivian Ponsonby male 23.0 0 0 12749 93.5 B24 S -- nan Montreal, PQ Mr 4 B 0 1 1 0 23.0 93.5 1 1 1 0.5787965616045845\n", "2 3 True Abbott, Mrs. Stanton (Rosa Hunt) female 35.0 1 1 C.A. 2673 20.25 M S A nan East Providence, RI Mrs 5 M 0 1 3 0 105.0 6.75 0 1 0 0.1451766953199618\n", "3 2 True Hocking, Miss. Ellen \"Nellie\" female 20.0 2 1 29105 23.0 M S 4 nan Cornwall / Akron, OH Miss 4 M 0 1 4 0 40.0 5.75 0 1 0 0.20152817574021012\n", "4 3 False Nilsson, Mr. August Ferdinand male 21.0 0 0 350410 7.8542 M S -- nan -- Mr 4 M 0 1 1 0 63.0 7.8542 1 1 0 0.5787965616045845\n", "... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", "1,042 3 False Goodwin, Master. Sidney Leonard male 1.0 5 2 CA 2144 46.9 M S -- nan Wiltshire, England Niagara Falls, NY Master 4 M 0 1 8 0 3.0 5.8625 1 1 0 0.045845272206303724\n", "1,043 3 False Ahlin, Mrs. Johan (Johanna Persdotter Larsson) female 40.0 1 0 7546 9.475 M S -- nan Sweden Akeley, MN Mrs 6 M 0 1 2 0 120.0 4.7375 0 1 0 0.1451766953199618\n", "1,044 3 True Johnson, Master. Harold Theodor male 4.0 1 1 347742 11.1333 M S 15 nan -- Master 4 M 0 1 3 0 12.0 3.7111 1 1 0 0.045845272206303724\n", "1,045 1 False Baxter, Mr. Quigg Edmond male 24.0 0 1 PC 17558 247.5208 B58 B60 C -- nan Montreal, PQ Mr 4 B 1 1 2 0 24.0 123.7604 1 0 1 0.5787965616045845\n", "1,046 3 False Coleff, Mr. Satio male 24.0 0 0 349209 7.4958 M S -- nan -- Mr 3 M 0 1 1 0 72.0 7.4958 1 1 0 0.5787965616045845" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "label_encoder = vaex.ml.LabelEncoder(features=['sex', 'embarked', 'deck'], allow_unseen=True)\n", "df_train = label_encoder.fit_transform(df_train)\n", "\n", "# While doing a transform, previously unseen values will be encoded as \"zero\".\n", "frequency_encoder = vaex.ml.FrequencyEncoder(features=['name_title'], unseen='zero')\n", "df_train = frequency_encoder.fit_transform(df_train)\n", "df_train" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once all the categorical data is encoded, we can select the features we are going to use for training the model." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:39.052837Z", "start_time": "2020-05-01T17:12:38.986328Z" } }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
# label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title multi_cabin name_num_words has_cabin is_alone family_size age_times_class fare_per_family_member age fare
0 1 1 0 0.578797 0 3 1 0 1 57 7.8958 19 7.8958
1 1 1 1 0.578797 0 4 1 0 1 23 93.5 2393.5
2 0 1 0 0.145177 0 5 1 0 3 105 6.75 3520.25
3 0 1 0 0.201528 0 4 1 0 4 40 5.75 2023
4 1 1 0 0.578797 0 4 1 0 1 63 7.8542 21 7.8542
" ], "text/plain": [ " # label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title multi_cabin name_num_words has_cabin is_alone family_size age_times_class fare_per_family_member age fare\n", " 0 1 1 0 0.578797 0 3 1 0 1 57 7.8958 19 7.8958\n", " 1 1 1 1 0.578797 0 4 1 0 1 23 93.5 23 93.5\n", " 2 0 1 0 0.145177 0 5 1 0 3 105 6.75 35 20.25\n", " 3 0 1 0 0.201528 0 4 1 0 4 40 5.75 20 23\n", " 4 1 1 0 0.578797 0 4 1 0 1 63 7.8542 21 7.8542" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# features to use for the trainin of the boosting model\n", "encoded_features = df_train.get_column_names(regex='^freque|^label')\n", "features = encoded_features + ['multi_cabin', 'name_num_words', \n", " 'has_cabin', 'is_alone', \n", " 'family_size', 'age_times_class',\n", " 'fare_per_family_member',\n", " 'age', 'fare']\n", "\n", "# Preview the feature matrix\n", "df_train[features].head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Estimator: [xgboost](https://xgboost.readthedocs.io/en/latest/)\n", "\n", "Now let's feed this data into an a tree based estimator. In this example we will use [xgboost](https://xgboost.readthedocs.io/en/latest/). In principle, any algorithm that follows the [scikit-learn](https://scikit-learn.org/stable/) API convention, i.e. it contains the `.fit`, `.predict` methods is compatable with `vaex`. However, the data will be materialized, i.e. will be read into memory before it is passed on to the estimators. We are hard at work trying to make at least some of the estimators from [scikit-learn](https://scikit-learn.org/stable/) run out-of-core!\n" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:40.968831Z", "start_time": "2020-05-01T17:12:39.055474Z" } }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
# pclass survived name sex age sibsp parch ticket fare cabin embarked boat body home_dest name_title name_num_words deck multi_cabin has_cabin family_size is_alone age_times_class fare_per_family_member label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title prediction_xgb
0 3 False Stoytcheff, Mr. Ilia male 19.0 0 0 349205 7.8958 M S -- nan -- Mr 3 M 0 1 1 0 57.0 7.8958 1 1 0 0.5787965616045845 0
1 1 False Payne, Mr. Vivian Ponsonby male 23.0 0 0 12749 93.5 B24 S -- nan Montreal, PQ Mr 4 B 0 1 1 0 23.0 93.5 1 1 1 0.5787965616045845 0
2 3 True Abbott, Mrs. Stanton (Rosa Hunt) female35.0 1 1 C.A. 267320.25 M S A nan East Providence, RI Mrs 5 M 0 1 3 0 105.0 6.75 0 1 0 0.1451766953199618 1
3 2 True Hocking, Miss. Ellen "Nellie" female20.0 2 1 29105 23.0 M S 4 nan Cornwall / Akron, OH Miss 4 M 0 1 4 0 40.0 5.75 0 1 0 0.20152817574021012 1
4 3 False Nilsson, Mr. August Ferdinand male 21.0 0 0 350410 7.8542 M S -- nan -- Mr 4 M 0 1 1 0 63.0 7.8542 1 1 0 0.5787965616045845 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1,0423 False Goodwin, Master. Sidney Leonard male 1.0 5 2 CA 2144 46.9 M S -- nan Wiltshire, England Niagara Falls, NYMaster 4 M 0 1 8 0 3.0 5.8625 1 1 0 0.045845272206303724 0
1,0433 False Ahlin, Mrs. Johan (Johanna Persdotter Larsson)female40.0 1 0 7546 9.475 M S -- nan Sweden Akeley, MN Mrs 6 M 0 1 2 0 120.0 4.7375 0 1 0 0.1451766953199618 0
1,0443 True Johnson, Master. Harold Theodor male 4.0 1 1 347742 11.1333 M S 15 nan -- Master 4 M 0 1 3 0 12.0 3.7111 1 1 0 0.045845272206303724 1
1,0451 False Baxter, Mr. Quigg Edmond male 24.0 0 1 PC 17558 247.5208B58 B60C -- nan Montreal, PQ Mr 4 B 1 1 2 0 24.0 123.7604 1 0 1 0.5787965616045845 0
1,0463 False Coleff, Mr. Satio male 24.0 0 0 349209 7.4958 M S -- nan -- Mr 3 M 0 1 1 0 72.0 7.4958 1 1 0 0.5787965616045845 0
" ], "text/plain": [ "# pclass survived name sex age sibsp parch ticket fare cabin embarked boat body home_dest name_title name_num_words deck multi_cabin has_cabin family_size is_alone age_times_class fare_per_family_member label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title prediction_xgb\n", "0 3 False Stoytcheff, Mr. Ilia male 19.0 0 0 349205 7.8958 M S -- nan -- Mr 3 M 0 1 1 0 57.0 7.8958 1 1 0 0.5787965616045845 0\n", "1 1 False Payne, Mr. Vivian Ponsonby male 23.0 0 0 12749 93.5 B24 S -- nan Montreal, PQ Mr 4 B 0 1 1 0 23.0 93.5 1 1 1 0.5787965616045845 0\n", "2 3 True Abbott, Mrs. Stanton (Rosa Hunt) female 35.0 1 1 C.A. 2673 20.25 M S A nan East Providence, RI Mrs 5 M 0 1 3 0 105.0 6.75 0 1 0 0.1451766953199618 1\n", "3 2 True Hocking, Miss. Ellen \"Nellie\" female 20.0 2 1 29105 23.0 M S 4 nan Cornwall / Akron, OH Miss 4 M 0 1 4 0 40.0 5.75 0 1 0 0.20152817574021012 1\n", "4 3 False Nilsson, Mr. August Ferdinand male 21.0 0 0 350410 7.8542 M S -- nan -- Mr 4 M 0 1 1 0 63.0 7.8542 1 1 0 0.5787965616045845 0\n", "... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n", "1,042 3 False Goodwin, Master. Sidney Leonard male 1.0 5 2 CA 2144 46.9 M S -- nan Wiltshire, England Niagara Falls, NY Master 4 M 0 1 8 0 3.0 5.8625 1 1 0 0.045845272206303724 0\n", "1,043 3 False Ahlin, Mrs. Johan (Johanna Persdotter Larsson) female 40.0 1 0 7546 9.475 M S -- nan Sweden Akeley, MN Mrs 6 M 0 1 2 0 120.0 4.7375 0 1 0 0.1451766953199618 0\n", "1,044 3 True Johnson, Master. Harold Theodor male 4.0 1 1 347742 11.1333 M S 15 nan -- Master 4 M 0 1 3 0 12.0 3.7111 1 1 0 0.045845272206303724 1\n", "1,045 1 False Baxter, Mr. Quigg Edmond male 24.0 0 1 PC 17558 247.5208 B58 B60 C -- nan Montreal, PQ Mr 4 B 1 1 2 0 24.0 123.7604 1 0 1 0.5787965616045845 0\n", "1,046 3 False Coleff, Mr. Satio male 24.0 0 0 349209 7.4958 M S -- nan -- Mr 3 M 0 1 1 0 72.0 7.4958 1 1 0 0.5787965616045845 0" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import xgboost\n", "import vaex.ml.sklearn\n", "\n", "# Instantiate the xgboost model normally, using the scikit-learn API\n", "xgb_model = xgboost.sklearn.XGBClassifier(max_depth=11,\n", " learning_rate=0.1, \n", " n_estimators=500, \n", " subsample=0.75, \n", " colsample_bylevel=1, \n", " colsample_bytree=1,\n", " scale_pos_weight=1.5,\n", " reg_lambda=1.5, \n", " reg_alpha=5, \n", " n_jobs=8,\n", " random_state=42,\n", " use_label_encoder=False,\n", " verbosity=0)\n", "\n", "# Make it work with vaex (for the automagic pipeline and lazy predictions)\n", "vaex_xgb_model = vaex.ml.sklearn.Predictor(features=features,\n", " target='survived',\n", " model=xgb_model, \n", " prediction_name='prediction_xgb')\n", "# Train the model\n", "vaex_xgb_model.fit(df_train)\n", "# Get the prediction of the model on the training data\n", "df_train = vaex_xgb_model.transform(df_train)\n", "\n", "# Preview the resulting train dataframe that contans the predictions\n", "df_train" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that in the above cell block, we call `.transform` on the `vaex_xgb_model` object. This adds the \"prediction_xgb\" column as _virtual column_ in the output dataframe. This can be quite convenient when calculating various metrics and making diagnosic plots. Of course, one can call a `.predict` on the `vaex_xgb_model` object, which returns an in-memory `numpy` array object housing the predictions.\n", "\n", "### Performance on training set\n", "\n", "Anyway, let's see what the performance is of the model on the training set. First let's create a convenience function that will help us get multiple metrics at once." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:40.985268Z", "start_time": "2020-05-01T17:12:40.975947Z" } }, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score, f1_score, roc_auc_score\n", "def binary_metrics(y_true, y_pred):\n", " acc = accuracy_score(y_true=y_true, y_pred=y_pred)\n", " f1 = f1_score(y_true=y_true, y_pred=y_pred)\n", " roc = roc_auc_score(y_true=y_true, y_score=y_pred)\n", " print(f'Accuracy: {acc:.3f}')\n", " print(f'f1 score: {f1:.3f}')\n", " print(f'roc-auc: {roc:.3f}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's check the performance of the model on the training set." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:41.088203Z", "start_time": "2020-05-01T17:12:40.988951Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Metrics for the training set:\n", "Accuracy: 0.924\n", "f1 score: 0.896\n", "roc-auc: 0.914\n" ] } ], "source": [ "print('Metrics for the training set:')\n", "binary_metrics(y_true=df_train.survived.values, y_pred=df_train.prediction_xgb.values)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Automatic pipelines\n", "\n", "Now, let's inspect the performance of the model on the test set. You probably noticed that, unlike when using other libraries, we did not bother to create a pipeline while doing all the cleaning, inputing, feature engineering and categorial encoding. Well, we did not _explicitly_ create a pipeline. In fact `veax` keeps track of all the changes one applies to a DataFrame in something called a state. A state is the place which contains all the informations regarding, for instance, the virtual columns we've created, which includes the newly engineered features, the categorically encoded columns, and even the model prediction! So all we need to do, is to extract the state from the training DataFrame, and apply it to the test DataFrame." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:41.299459Z", "start_time": "2020-05-01T17:12:41.093866Z" } }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
# pclasssurvived name sex age sibsp parchticket farecabin embarked boat bodyhome_dest name_title name_num_wordsdeck multi_cabin has_cabin family_size is_alone age_times_class fare_per_family_member label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title prediction_xgb
0 3False O'Connor, Mr. Patrick male 28.032 0 0366713 7.75 M Q -- nan-- Mr 3M 0 1 1 0 84.096 7.75 1 2 0 0.578797 0
1 3False Canavan, Mr. Patrick male 21 0 0364858 7.75 M Q -- nanIreland Philadelphia, PAMr 3M 0 1 1 0 63 7.75 1 2 0 0.578797 0
2 1False Ovies y Rodriguez, Mr. Servando male 28.5 0 0PC 17562 27.7208D43 C -- 189?Havana, Cuba Mr 5D 0 1 1 0 28.5 27.7208 1 0 4 0.578797 1
3 3False Windelov, Mr. Einar male 21 0 0SOTON/OQ 3101317 7.25 M S -- nan-- Mr 3M 0 1 1 0 63 7.25 1 1 0 0.578797 0
4 2True Shelley, Mrs. William (Imanita Parrish Hall)female25 0 1230433 26 M S 12 nanDeer Lodge, MT Mrs 6M 0 1 2 0 50 13 0 1 0 0.145177 1
" ], "text/plain": [ " # pclass survived name sex age sibsp parch ticket fare cabin embarked boat body home_dest name_title name_num_words deck multi_cabin has_cabin family_size is_alone age_times_class fare_per_family_member label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title prediction_xgb\n", " 0 3 False O'Connor, Mr. Patrick male 28.032 0 0 366713 7.75 M Q -- nan -- Mr 3 M 0 1 1 0 84.096 7.75 1 2 0 0.578797 0\n", " 1 3 False Canavan, Mr. Patrick male 21 0 0 364858 7.75 M Q -- nan Ireland Philadelphia, PA Mr 3 M 0 1 1 0 63 7.75 1 2 0 0.578797 0\n", " 2 1 False Ovies y Rodriguez, Mr. Servando male 28.5 0 0 PC 17562 27.7208 D43 C -- 189 ?Havana, Cuba Mr 5 D 0 1 1 0 28.5 27.7208 1 0 4 0.578797 1\n", " 3 3 False Windelov, Mr. Einar male 21 0 0 SOTON/OQ 3101317 7.25 M S -- nan -- Mr 3 M 0 1 1 0 63 7.25 1 1 0 0.578797 0\n", " 4 2 True Shelley, Mrs. William (Imanita Parrish Hall) female 25 0 1 230433 26 M S 12 nan Deer Lodge, MT Mrs 6 M 0 1 2 0 50 13 0 1 0 0.145177 1" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# state transfer to the test set\n", "state = df_train.state_get()\n", "df_test.state_set(state)\n", "\n", "# Preview of the \"transformed\" test set\n", "df_test.head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that once we apply the state from the train to the test set, the test DataFrame contains all the features we created or modified in the training data, and even the predictions of the xgboost model!\n", "\n", "The state is a simple Python dictionary, which can be easily stored as JSON to disk, which makes it very easy to deploy.\n", "\n", "### Performance on test set\n", "\n", "Now it is trivial to check the model performance on the test set:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:41.381884Z", "start_time": "2020-05-01T17:12:41.310025Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Metrics for the test set:\n", "Accuracy: 0.786\n", "f1 score: 0.728\n", "roc-auc: 0.773\n" ] } ], "source": [ "print('Metrics for the test set:')\n", "binary_metrics(y_true=df_test.survived.values, y_pred=df_test.prediction_xgb.values)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Feature importance\n", "Let's now look at the feature importance of the `xgboost` model." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:41.911379Z", "start_time": "2020-05-01T17:12:41.384369Z" }, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAIbCAYAAABLzPzHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABDY0lEQVR4nO3deZglVX3/8feHQXYcQHCZEWaMgBrEoLagJooGN0QUN1RUBFxAYwB/boQYxQXFKAoGEwRxww3U4AZENAqigNIjKCIaQQaGYWeYjZ3h+/ujqvXS9k539TTzfj3Pfbxddc6p76ka537mVN0mVYUkSVJX1pruAiRJ0prF8CFJkjpl+JAkSZ0yfEiSpE4ZPiRJUqcMH5IkqVOGD0m6n0iyVZKVSWZNdy3SSAwfkrSaSfLKJL9IckuS69v3b0mSkfpV1ZVVtVFVreqqVmkiDB+StBpJ8nbgaOBjwEOBhwAHAH8PrDONpUmTJv6GU0laPSSZDVwN7F1V3xqmzW7Ah4BHAsuAE6rqsHbffOBy4AFVdXeSM4GzgX8EHgecC+xVVTdO7UykkbnyIUmrj6cA6wLfGaHNLcDewCbAbsCbk+wxQvu9gH2BB9OsnLxjMgqV7gvDhyStPjYHbqyquwc2JDknydIktyV5elWdWVUXVdU9VfUb4GvAziOM+fmq+r+qug04GdhhSmcgjYHhQ5JWHzcBmydZe2BDVT21qjZp962VZKckP0lyQ5JlNM+DbD7CmNf2vL8V2GgK6pbGxfAhSauPc4E7gBeN0OarwHeBLatqNnAsMOK3YKTVjeFDklYTVbUUeD/wn0lelmSjJGsl2QHYsG22MbCkqm5PsiPNMx3SjLL26E0kSV2pqn9Pshh4F/AlmgdM/wS8GzgHeAtwZJJjgLNonuPYZHqqlSbGr9pKkqROedtFkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKn/KqtNAabb755zZ8/f7rLkKQZZcGCBTdW1RaDtxs+pDGYP38+/f39012GJM0oSa4Yaru3XSRJUqcMH5IkqVOGD0mS1CnDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkThk+JElSpwwfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSerU2tNdwP1JkoXAG6rqR6O0K2Cbqrp0AseYcN8uJfkCcFVVvafLvlPlosXLmH/IqdNdhiR1auERu03JuK58SJKkThk+JElSpwwfUyDJjknOTbI0yTVJjkmyzqBmz0/ypyQ3JvlYkrV6+u+X5JIkNyf5QZJ54zz+ukk+nuTKJNclOTbJ+u2+ZyS5Ksnbk1zf1rdvT9/1kxyZ5Ioky5L8rKfvC5Nc3M7rzCSP6en3+CS/SrIiyUnAeoNqekGSC9u+5yR53Fj7DjPHzZN8vx1vSZKzB85hkjlJvpXkhiSXJzmw3b5ZO/fd2583SnJpkr2HOcabkvQn6V9167KxXwBJ0ogMH1NjFfA2YHPgKcAuwFsGtXkx0Ac8AXgRsB9Akj2AQ4GXAFsAZwNfG+fxPwpsC+wAbA3MBd7bs/+hwOx2++uBTyfZtN33ceCJwFOBzYB3Afck2bat4+C2rtOA7yVZpw1W3wZObPt8A3jpwMGSPAH4HLA/8CDgM8B325A0Yt8RvB24qq3lITTnrNoA8j3g1+38dgEOTvLcqlpCc56PT/Jg4JPAhVX1paEOUFXHVVVfVfXN2mD2GEqSJI2F4WMKVNWCqjqvqu6uqoU0H7Y7D2r20apaUlVXAkcBr2q37w98pKouqaq7gQ8DO4x19SNJgDcCb2vHX9GO8cqeZncBH6iqu6rqNGAl8Kj2g3s/4KCqWlxVq6rqnKq6A3gFcGpV/bCq7qIJKevThJQnAw8AjmrH/CZwfs/x3gh8pqp+0Y75ReCOtt9ofYdzF/AwYF7b7+yqKuBJwBZV9YGqurOq/gQcPzD/qjqDJuD8L7Bbe74lSR0yfEyBJNu2twSuTbKc5sN/80HNFvW8vwKY076fBxzd3k5YCiwBQvOv+LHYAtgAWNAzxv+02wfc1AabAbcCG7U1rgdcNsS4c9o6Aaiqe9o5zG33LW4//HvnNGAe8PaBetqatmz7jdZ3OB8DLgXOaG9fHdJzrDmDjnUozerIgOOAxwKfr6qbxnAsSdIk8qu2U+O/gAuAV1XViiQHAy8b1GZL4OL2/VbA1e37RcDhVfWVCR77RuA2YLuqWjyBvrcDj6S5bdHramD7gR/aFZYtgcVAAXOTpCdEbMVfQszAnA4ffMAkO4/Sd0jtis7baULNdsBPkpzfHuvyqtpmqH5JZtGsRH0JeHOSz4/la8vbz51N/xR95UyS1jSufEyNjYHlwMokjwbePESbdybZNMmWwEHASe32Y4F/aT9QSTI7ycvHeuB2ReJ44JPtcw0kmZvkuWPs+zngE+1Dm7OSPCXJusDJwG5JdknyAJoP/juAc4BzgbuBA5OsneQlwI49Qx8PHJBkpzQ2TLJbko3H0HdI7QOsW7chaDnNczargF8Cy5O8u314dlaSxyZ5Utv10PZ/96O5dfSlNpBIkjpi+Jga7wD2AlbQfPCeNESb7wALgAuBU4ETAKrqFJoHRr/e3rL5LbDrOI//bppbEue1Y/wIeNQ4ar+I5rmLJW0ta1XVH4DXAP9Bs0KyO7B7+1zFnTQPyO4D3EzzfMh/DwxYVf00z30c0+6/tG3LaH1HsE07r5U0AeY/q+rMqlrV1rYDcHlb62eB2UmeCPw/YO+23UdpVm0O+evhJUlTJfe+1S5pKH19fdXf3z/dZUjSjJJkQVX1Dd7uyockSeqU4WOGan/Z18ohXq+e7tomS5JDh5nj6dNdmyRp4vy2ywxVVdtNdw1Trao+TPM1ZUnS/YgrH5IkqVOGD0mS1CnDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkThk+JElSpwwfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjpl+JAkSZ1ae7QGSR4FfB3YGvjXqvrUlFelv5LkC8BVVfWeLvuuzpI8DfhsVT1qmP3zgcuBB1TV3fflWBctXsb8Q069L0NI0qRaeMRu013ChI1l5eNdwJlVtbHBQ9MpSSXZeuDnqjq7N3gkWZjkWdNTnSRprMYSPuYBFw+1I8msyS1HkiTd340YPpL8GHgmcEySlUm+muS/kpyW5BbgmUnmJPlWkhuSXJ7kwJ7+6yf5QpKbk/wuyTuTXNWz/17/km3bfqjn5xckuTDJ0iTnJHlcz76FSd6R5DdJliU5Kcl6Pftf1PZdnuSyJM9L8vIkCwbN8e1Jvj3KeVg3yceTXJnkuiTHJlm/3feMJFe141yf5Jok+w46B0cmuaKt82c9fV+Y5OJ2fmcmeUxPv8cn+VWSFUlOAtYbVNNI52bEvsPMcbR57JbkgvZ8LkpyWM+++e213Lfdd3OSA5I8qb0+S5McM+h4+yW5pG37gyTzRqnvp+3bX7d/Fl8xUHO7/0RgK+B77f53DTHG7CQntHNbnORDBmhJ6t6I4aOq/hE4G3hrVW0E3AnsBRwObAycA3wP+DUwF9gFODjJc9sh3gc8sn09F3jdWAtL8gTgc8D+wIOAzwDfTbJuT7M9gecBjwAeB+zT9t0R+BLwTmAT4OnAQuC7wCN6P+SB1wAnjlLOR4FtgR1onn2ZC7y3Z/9Dgdnt9tcDn06yabvv48ATgacCm9HcxronybbA14CDgS2A02g+ONdJsg7w7bauzYBvAC8dy7kZre8oRprHLcDeNOdzN+DNSfYY1H8nYBvgFcBRwL8CzwK2A/ZMsnNb/x7AocBL2rmf3Z6LYVXV09u3f1dVG1XVSYP2vxa4Eti93f/vQwzzReBummv4eOA5wBuGO2aSNyXpT9K/6tZlI5UnSRqHiXzb5TtV9fOqugfYHtiiqj5QVXdW1Z+A44FXtm33BA6vqiVVtQgYzzMjbwQ+U1W/qKpVVfVF4A7gyT1tPlVVV1fVEpoQtEO7/fXA56rqh1V1T1UtrqrfV9UdwEk0gYMk2wHzge8PV0SStLW8rZ3HCuDDPXMEuAv4QFXdVVWnASuBRyVZC9gPOKitYVVVndPW8Qrg1LbGu2hCyvo0IeXJwAOAo9oxvwmcP8ZzM1rfkQw5D4CqOrOqLmrP529owsLOg/p/sKpur6ozaMLK16rq+qpaTBMwHt+22x/4SFVd0j4I+mFgh9FWP+6LJA8BdgUOrqpbqup64JPc+zreS1UdV1V9VdU3a4PZU1WaJK1xRv22yxAW9byfB8xJsrRn2yyaDxqAOYPaXzGO48wDXpfkn3u2rdOOOeDanve39uzbkmYlYShfBL6W5D3Aa4GT2zAwnC2ADYAFTQ4BIDTzHHDToG9T3ApsBGxOc8vjsiHGnUPP+aiqe5Isoll1WAUsrqrqad977kY6NzVK35EMNw+S7AQcATy2Pda6NKsqva7reX/bED9v1FP/0UmO7NkfmrmP58/IeMyjCWXX9FzHtbj3n09JUgcmEj56P9QWAZdX1TbDtL2GJggMPLC61aD9t9J8sA94KDDwTMgimlWTwydQ4yKaWz1/parOS3In8DSaW0h7jTLWjTQfnNu1/4IfjxuB29tafj1o39U0K0fAn1dYtgQW05zjuUnSEyK24i8hZthz097aGKnvRH0VOAbYtapuT3IUTbiaiIH6v3IfaxqsRti3iGZ1aPP7+rVbSdJ9M5Hw0euXwPIk76a5pXIn8Bhg/ao6HzgZ+JckvwA2BP55UP8Lgb2SXAw8m2YZv7/ddzxwSpIftcfZAHgG8NP21sdITgDOSPJ94CfAw4CNq+r37f4v0XyQ3l1VPxtpoHZF4njgk0neWlXXJ5kLPLaqfjCGvp8DPpHktTQrATsCv6I5N4ck2QX4KXAQzYfjOW33u4EDk3waeGHb7yejnRvg3FH6TtTGwJI2eOxIE9rOmOBYxwIfTHJhVV2cZDbwnKoavJIy2HXA3wCXjrL/r1TVNUnOAI5M8m80t5QeATy8qs4areDt586mfwZ/p16SVif36TecVtUqYHeaZy0up/mX/mdpHloEeD/NMvrlNB9Ugx/sPKjtvxR4Nc2DkgNj99M823AMcDPNB84+Y6zrl8C+NPf0lwFn0Sy7DziR5vbBaA+aDnh3e/zzkiwHfkT7LMQYvAO4iOa5iyU0D6+uVVV/oHn25D9oztvuNA9L3llVd9I8jLkPzdxfAfx3z/yGPTej9b0P3gJ8IMkKmodtT57oQFV1Cs15+Hp7Pn9L8zzGaA4Dvth+e2bPIfZ/BHhPu/8dQ+zfm+aW0e9ozs03aYKpJKlDufejAVN8sOQZwJer6uGdHXToOtYHrgeeUFV/nM5aNDP09fVVf3//6A0lSX+WZEFV9Q3evqb+t13eDJxv8JAkqXtrXPhIspDmds/bB22/uP3lVINfr56WQqdAkkOHmePp010bNP+tlmHqWzndtUmSJk+nt12kmcrbLpI0ft52kSRJqwXDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkThk+JElSpwwfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjpl+JAkSZ0yfEiSpE4ZPkSSRyW5IMmKJAdO4rivTnJGz8+VZOvJGr9n3K2SrEwya7LHliRNvlTVdNegaZbkBGB5Vb1tio9TwDZVdelUHmcqrPuwbephrztqusuY0RYesdt0lyCpY0kWVFXf4O2ufAhgHnDxdBchSVozGD7WcEl+DDwTOKa9dXFQewtmeZJFSQ7raTu/vXWyb7vv5iQHJHlSkt8kWZrkmJ72+yT52RDHfFKS65Ks3bPtpUkuHKXWHZP0t7Vdl+QTg+paO8lT2nkMvG5PsrBtt1aSQ5JcluSmJCcn2ew+nkJJ0jgZPtZwVfWPwNnAW6tqI+DXwN7AJsBuwJuT7DGo207ANsArgKOAfwWeBWwH7Jlk51GOeT5wE/Dsns2vAU4cpdyjgaOr6oHAI4GThxj73KraqJ3LpsB5wNfa3QcCewA7A3OAm4FPD3ewJG9qw07/qluXjVKaJGmsDB+6l6o6s6ouqqp7quo3NB/cg8PEB6vq9qo6A7gF+FpVXV9Vi2mCzOPHcKgv0gQO2tWH5wJfHaXPXcDWSTavqpVVdd4o7T/V1vev7c/7A/9aVVdV1R3AYcDLeldgelXVcVXVV1V9szaYPYYpSZLGwvChe0myU5KfJLkhyTLgAGDzQc2u63l/2xA/bzSGQ30Z2D3JRsCewNlVdc0ofV4PbAv8Psn5SV4wwjz2B54B7FVV97Sb5wGntLeHlgKXAKuAh4yhXknSJDF8aLCvAt8Ftqyq2cCxQCb7IO0qybnAi4HXMvotF6rqj1X1KuDBwEeBbybZcHC7JE8DPgi8qKp675csAnatqk16Xuu1tUiSOjLkcrPWaBsDS6rq9iQ7AnsBZ4zSZ6K+BBxCuyIxWuMkrwF+UFU3tCsX0Kxc9LbZEjgJ2Luq/m/QEMcChyd5XVVdkWQL4KlV9Z3Rjr393Nn0+1VRSZoUrnxosLcAH0iyAngvQzzUOYlOoQ0eVXXLGNo/D7g4yUqah09fWVW3D2qzC/BQmlWRgW+8DHyN+GiaVZ0z2vmdR/PwrCSpQ/6SMU2rJJcB+1fVj6a7lpH09fVVf3//dJchSTOKv2RMq50kLwUK+PF01yJJ6o7hQ9MiyZnAfwH/1PNtFJKcPuiXhA28Dp22YiVJk8oHTjUtquoZw2zfteNSJEkdc+VDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjpl+JAkSZ0yfEiSpE4ZPiRJUqcMH5IkqVOGD0mS1CnDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkThk+JElSpwwfkiSpU4YPSZLUqbWnu4CZJMlC4A1V9aNR2hWwTVVdOoFjTLhvl5J8Abiqqt7TVd/JODdJzgS+XFWfHU+/ixYvY/4hp070sPcLC4/YbbpLkHQ/4cqHJEnqlOFDkiR1yvAxAUl2THJukqVJrklyTJJ1BjV7fpI/JbkxyceSrNXTf78klyS5OckPkswb5/HXTfLxJFcmuS7JsUnWb/c9I8lVSd6e5Pq2vn17+q6f5MgkVyRZluRnPX1fmOTidl5nJnlMT7/HJ/lVkhVJTgLWG1TTC5Jc2PY9J8njxtp3hHm+s63/6iT7jfUctPtf1NazPMllSZ43xPgPS/KbJO8YSz2SpMlh+JiYVcDbgM2BpwC7AG8Z1ObFQB/wBOBFwH4ASfYADgVeAmwBnA18bZzH/yiwLbADsDUwF3hvz/6HArPb7a8HPp1k03bfx4EnAk8FNgPeBdyTZNu2joPbuk4DvpdknTZYfRs4se3zDeClAwdL8gTgc8D+wIOAzwDfbQPCiH2H04aFdwDPBrYBnjXWc5BkR+BLwDuBTYCnAwsHjT8fOAs4pqo+PkwNb0rSn6R/1a3LRitZkjRGho8JqKoFVXVeVd1dVQtpPmx3HtTso1W1pKquBI4CXtVu3x/4SFVdUlV3Ax8Gdhjr6keSAG8E3taOv6Id45U9ze4CPlBVd1XVacBK4FHt6st+wEFVtbiqVlXVOVV1B/AK4NSq+mFV3UUTUtanCSlPBh4AHNWO+U3g/J7jvRH4TFX9oh3zi8Adbb/R+g5nT+DzVfXbqroFOGwc5+D1wOfaudzTzvX3PWP/LXAm8L6qOm64AqrquKrqq6q+WRvMHkPJkqSx8NsuE9CuEnyCZmVjA5rzuGBQs0U9768A5rTv5wFHJzmyd0iaf7lfMYbDb9Eec0HzGfzn/rN62tzUBpsBtwIb0azUrAdcNsS4c3qPX1X3JFnU1rUKWFxVNWhOA+YBr0vyzz3b1mnHrFH6DmcO9z6nvX1GOwdb0qzcDOfVwKXAN8dQhyRpkhk+Jua/gAuAV1XViiQHAy8b1GZL4OL2/VbA1e37RcDhVfWVCR77RuA2YLuqWjyBvrcDjwR+PWjf1cD2Az+0qwtbAotpAsTcJOkJEVvxlxAzMKfDBx8wyc6j9B3ONe3xB2w1aB4jnYNF7RyHcxjwPOCrSV5ZVatGqYXt586m36+aStKk8LbLxGwMLAdWJnk08OYh2rwzyaZJtgQOAk5qtx8L/EuS7QCSzE7y8rEeuKruAY4HPpnkwe0Yc5M8d4x9Pwd8IsmcJLOSPCXJusDJwG5JdknyAODtNLdOzgHOBe4GDkyydpKXADv2DH08cECSndLYMMluSTYeQ9/hnAzsk+Rvk2wAvG8c5+AEYN92Lmu1+x7dM/ZdwMuBDYET0/MwsCRp6vmX7sS8A9gLWEHzIXjSEG2+Q3Pb4ELgVJoPRKrqFJqHJb+eZDnwW2DXcR7/3TS3Dc5rx/gR8Khx1H4RzXMXS9pa1qqqPwCvAf6DZmVhd2D3qrqzqu6keUB2H+BmmudD/ntgwKrqp3kG45h2/6VtW0brO5yqOp3mWZkft+P9eKznoKp+CewLfBJYRvNg6b2eqemp68HA5wwgktSd3PtWvKSh9PX1VX9//3SXIUkzSpIFVdU3eLv/2pMkSZ0yfKym2l/2tXKI16unu7bJkuTQYeZ4+nTXJkmaOn7bZTVVVdtNdw1Trao+TPP7OSRJaxBXPiRJUqcMH5IkqVOGD0mS1CnDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkThk+JElSpwwfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjpl+JAkSZ1ae7oL0MyW5DBg66p6zTD7Xw28rqqeM0XHL2Cbqrp0Ko990eJlzD/k1Ps6zGph4RG7TXcJktZwrnxo0iSZn6SS/DnUVtVXpip4jGY6jy1JGp7hQ5IkdcrwsYZKsjDJO5P8JsktSU5I8pAkpydZkeRHSTZN8owkVw3R91lDDPvT9n+XJlmZ5ClJ9knyszHUs12SHyZZkuS6JIe223dMcm6SpUmuSXJMknUGdX9+kj8luTHJx5Ks1fa917HbVZkDkvwxyc1JPp0kI9T0piT9SfpX3bpstClIksbI8LFmeynwbGBbYHfgdOBQYHOaPxsHjnO8p7f/u0lVbVRV546lU5KNgR8B/wPMAbYG/rfdvQp4W1vTU4BdgLcMGuLFQB/wBOBFwH4jHO4FwJOAvwP2BJ47XMOqOq6q+qqqb9YGs8cyFUnSGBg+1mz/UVXXVdVi4GzgF1V1QVXdAZwCPL6jOl4AXFtVR1bV7VW1oqp+AVBVC6rqvKq6u6oWAp8Bdh7U/6NVtaSqrgSOAl41wrGOqKqlbdufADtM9mQkSSPz2y5rtut63t82xM8bdVTHlsBlQ+1Isi3wCZqVjQ1o/swuGNRsUc/7K2hWT4Zzbc/7W+lujpKkluFDo7mF5kMfgCSzgC2GaVsTPMYihl+t+C/gAuBVVbUiycHAywa12RK4uH2/FXD1BOsY1vZzZ9PvV1QlaVJ420Wj+T9gvSS7JXkA8B5g3WHa3gDcA/zNOI/xfeChSQ5Osm6SjZPs1O7bGFgOrEzyaODNQ/R/Z/tw7JbAQcBJ4zy+JKlDhg+NqKqW0Tzg+VlgMc1KyFXDtL0VOBz4efvtlCeP8RgraB583Z3mtsgfgWe2u98B7AWsAI5n6GDxHZpbMRcCpwInjOW4kqTpkaqJrpRLa46+vr7q7++f7jIkaUZJsqCq+gZvd+VDkiR1ygdO1YkkT6P5PSJ/par8xokkrUEMH+pEVZ2NX2uVJOFtF0mS1DHDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkThk+JElSpwwfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjpl+JAkSZ0yfAiAJMcm+bfprmMkSZ6R5KrprkOSdN+sPd0FqHtJ9gHeUFX/MLCtqg6YvopWfxctXsb8Q06d7jLGZeERu013CZI0JFc+JElSpwwfq4kkhyS5LMmKJL9L8uJ2+6wkRya5McnlSd6apJKs3e6fneSEJNckWZzkQ0lmjXCcxwDHAk9JsjLJ0nb7F5J8qH3/jCRXJXlXkuvbsfdI8vwk/5dkSZJDe8Zcq6f+m5KcnGSzdt96Sb7cbl+a5PwkDxnlXGyW5PNJrk5yc5Jvj+ectfu2TnJWkmXtuTup3Z4kn2zntSzJb5I8dizXSJI0Obztsvq4DHgacC3wcuDLSbYGXgTsCuwA3AJ8Y1C/LwLXAVsDGwLfBxYBnxnqIFV1SZIDGHTbZQgPBdYD5gL7AMcDPwSeCGwFLEjy9ar6E3AgsAewM3AD8Cng08CrgNcBs4EtgTvaedw2yrk4EVgJbNf+71OHaTfkOauqa4APAmcAzwTWAfraPs8Bng5sCywDHg0sHaUeSdIkcuVjNVFV36iqq6vqnqo6CfgjsCOwJ3B0VV1VVTcDRwz0aVcQdgUOrqpbqup64JPAKyehpLuAw6vqLuDrwOZtHSuq6mLgYuBxbdv9gX9ta7wDOAx4Wbs6cxfwIGDrqlpVVQuqavlwB03ysHZOB1TVzVV1V1WdNVTbEc7ZQP3zgDlVdXtV/axn+8Y0oSNVdUkbVoaq5U1J+pP0r7p12RhOmSRpLAwfq4kkeye5sL01sRR4LM0H/hyalYwBve/nAQ8Arunp9xngwZNQ0k1Vtap9P7BScV3P/tuAjXrqOKWnhkuAVcBDaFYxfgB8vb2N8u9JHjDCcbcElrRBa0QjnDOAdwEBfpnk4iT7AVTVj4FjaFZmrktyXJIHDjV+VR1XVX1V1Tdrg9mjlSNJGiPDx2ogyTya2xpvBR5UVZsAv6X58LwGeHhP8y173i+iuZWxeVVt0r4eWFXbjXLImrTi/1LHrj01bFJV61XV4nbl4v1V9bc0t09eAOw9ylibJdlkpAOOcs6oqmur6o1VNYdmZeY/29tYVNWnquqJNLd1tgXeOfGpS5LGy2c+Vg8b0gSCGwCS7Evzr3iAk4GDkpxK88zHuwc6VdU1Sc4Ajmx/R8dK4BHAw4e7VdG6Dnh4knWq6s5JqP9Y4PAkr6uqK5JsATy1qr6T5JnAjcDvgOU0tz1WDTdQO6fTacLCP7VzekpV/XRQ05HOGUleDpxbVVcBN7dtVyV5Ek3o/hXN+bx9pHoGbD93Nv1+dVWSJoUrH6uBqvodcCRwLk0w2B74ebv7eJoHJ38DXACcBtzNXz4w96Z5oPJ3NB+y3wQeNsohf0zzzMa1SW6chCkcDXwXOCPJCuA8YKd230PbmpbT3I45C/jyKOO9liak/B64Hjh4cINRzhnAk4BfJFnZ1nZQVV0OPJDmnN4MXAHcBHx8XLOVJN0nqZrsFXhNpSS7AsdW1bzprmVN0tfXV/39/dNdhiTNKEkWVFXf4O2ufKzmkqzf/n6NtZPMBd4HnDLddUmSNFGGj9VfgPfT3Ca4gObWxXtH7dT8t1pWDvE6dorrHZNhaluZ5GnTXZskaWr5wOlqrqpupXl+Ybz9DgBW2/9eS1VtNHorSdL9kSsfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjpl+JAkSZ0yfEiSpE4ZPiRJUqcMH5IkqVOGD0mS1CnDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkTs3Y8JHkUUkuSLIiyYHTXc9kSvL3Sf6YZGWSPSZ57EOTfLZ9Pz9JJVl7Mo/RlSRnJnnDdNchSRqfGfmh03oXcGZVPX66C5kCHwCOqaqjJ3vgqvrwZI+5Jrho8TLmH3LqdJcxZguP2G26S5CkYc3YlQ9gHnDxeDutDv/KH0MNE5qbJiaNmfz/BUmaUWbkX7hJfgw8EzimvTVxUHsLZnmSRUkO62k7cGvh9UmuBH7cbt8vySVJbk7ygyTzxnDcSnJgkj8luTHJx3o/tEYas+37T0n+CPxxhGNcBvwN8L12busm2bcdd0V77P172j8jyVVJ3pXk+iTXJNkjyfOT/F+SJUkO7Wl/WJIvD3HclydZMGjb25N8e5Rz8oUk/5nk9Lbenyd5aJKj2vPw+ySP72k/J8m3ktyQ5PLeW2Ztbd9I8uV2rhcl2TbJv7RzW5TkOYNKeGSSXyZZluQ7STbrGe/JSc5JsjTJr5M8o2ffmUkOT/Jz4Nb2nEuSOjAjw0dV/SNwNvDWqtoI+DWwN7AJsBvw5iGeldgZeAzw3HbfocBLgC3asb42xsO/GOgDngC8CNgPYIxj7gHsBPztCHN7JHAlsHtVbVRVdwDXAy8AHgjsC3wyyRN6uj0UWA+YC7wXOB54DfBE4GnAe5OM9uH6XeARSR7Ts+01wImj9APYE3gPsDlwB3Au8Kv2528CnwBog9r3aK7XXGAX4OAkz+0Za/f2mJsCFwA/oPlzOpfmdtRnBh17b5prMAe4G/hUe6y5wKnAh4DNgHcA30qyRU/f1wJvAjYGrhg8qSRvStKfpH/VrcvGcBokSWMxI8PHYFV1ZlVdVFX3VNVvaD70dx7U7LCquqWqbgP2Bz5SVZdU1d3Ah4EdxrL6AXy0qpZU1ZXAUcCr2u1jGfMjbd/bxjm/U6vqsmqcBZxBEyoG3AUcXlV3AV+n+dA/uqpWVNXFNLdwHjfKMe4ATqIJHCTZDpgPfH8MJZ5SVQuq6nbgFOD2qvpSVa1qxxxY+XgSsEVVfaCq7qyqP9EEpVf2jHV2Vf2gPYffoAlyR/TMbX6STXran1hVv62qW4B/A/ZMMqudx2lVdVr75+KHQD/w/J6+X6iqi6vq7nb8wefkuKrqq6q+WRvMHsNpkCSNxf0ifCTZKclP2qX8ZcABNB/AvRb1vJ8HHN0uxy8FlgCh+df1aHrHuYLmX9xjHbO375gl2TXJee0tlKU0H6C987up/aAHGAg21/Xsvw3YaAyH+iKwV5LQrAqc3IaS0Qw+1nDHngfMGThH7VwOBR4ywlg3DjG33rkMvh4PoDk384CXDzrWPwAPG6avJKkj0/7w5ST5KnAMsGtV3Z7kKP46fFTP+0U0KwVfmcCxtuQvD4NuBVw9jjFrhH1DSrIu8C2a2wvfqaq72ucwMt6xRlNV5yW5k2ZVZa/2NZkWAZdX1TaTOOaWPe+3olkFurE91olV9cYR+o77ekiS7rv7S/jYGFjSBo8daT40zxih/bHAB5NcWFUXJ5kNPKeqvjGGY70zyS9o/vV9EO3zDPdxzJGsA6wL3ADcnWRX4DnAb+/juMP5Ek2Qu7uqfjbJY/8SWJ7k3TTPZtxJ8xzO+lV1/gTHfE2SLwELaZ4J+WZVrWofqj2/fZ7kRzQrIk8GLq2qq8Z7kO3nzqbfr69K0qS4X9x2Ad4CfCDJCpoHLk8eqXFVnQJ8FPh6kuU0H+S7jvFY3wEWABfSPNB4wiSMOVKtK4ADaeZ0M02w+u59HXcEJwKPZWwPmo5Le/tkd2AH4HKaFYrPAvflgYoTgS8A19I8dHtge6xFNA8EH0oT3BYB7+T+82dekmasVLnyPFZJCtimqi6d7lqmSpL1ab5d84SqGvYrwWuavr6+6u/vn+4yJGlGSbKgqvoGb/dfgRrszcD5Bg9J0lS5vzzzMSmSPA04fah97e8TmVHHGa8kC2keZN1j0PaLab49Mtj+E3xoV5K0BjN89KiqsxnhK6lVNSnfMBntONOlquYPs327jkuRJN2PedtFkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjpl+JAkSZ0yfEiSpE4ZPiRJUqcMH5IkqVOGD0mS1CnDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkThk+JElSpwwfkiSpU4YPSZLUqbWnuwBpqiU5DNi6ql4z0TEuWryM+YecOnlFTZKFR+w23SVI0ri58iFJkjpl+ND9ShJX8yRpNWf4mEJJFiZ5R5LfJFmW5KQk6yXZNMn3k9yQ5Ob2/cN7+p2Z5ENJzkmyMsn3kjwoyVeSLE9yfpL5Pe0fneSHSZYk+UOSPcdQ2xeSfDrJqUlWJPlFkke2++Ynqd4P8ramN7Tv90ny8ySfTLI0yZ+SPLXdvijJ9UleN8rxH9H2Xav9+bNJru/Z/+UkB7fv5yT5bju/S5O8safdYUm+2bZfDuzTjn1WO68fApv3tF+vbXtTe/zzkzxktPMlSZo8ho+ptyfwPOARwOOAfWjO++eBecBWwG3AMYP6vRJ4LTAXeCRwbttnM+AS4H0ASTYEfgh8FXgw8CrgP5NsN4baXgW8H9gUuBQ4fBzz2gn4DfCg9thfB54EbA28BjgmyUbDda6qy4HlwOPbTU8DViZ5TPvz04Gz2vdfA64C5gAvAz6cZJee4V4EfBPYBPhKW88CmtDxQaA3CL0OmA1s2dZ+AM35/ytJ3pSkP0n/qluXjXAqJEnjYfiYep+qqquragnwPWCHqrqpqr5VVbdW1QqaD/2dB/X7fFVdVlXLgNOBy6rqR1V1N/AN/vKh/QJgYVV9vqrurqpfAd+i+ZAezX9X1S/bMb8C7DCOeV3eHnMVcBLNh/kHquqOqjoDuJMmiIzkLGDnJA9tf/5m+/MjgAcCv06yJfAPwLur6vaquhD4LE0wG3BuVX27qu4BtqAJQf/W1vJTmvM+4C6a0LF1Va2qqgVVtXyo4qrquKrqq6q+WRvMHut5kSSNwvvjU+/anve3AnOSbAB8kmZFZNN238ZJZrUf5gDX9fS7bYifB1YV5gE7JVnas39t4MQJ1DbsSsUQBtdDVQ1X43DOAl5Is6rxU+BMmlBxO3B2Vd2TZA6wpA1pA64A+np+XtTzfg5wc1XdMqj9lu37E9v3X0+yCfBl4F+r6q5RapUkTRLDx/R4O/AoYKequjbJDsAFQCYw1iLgrKp69iTWN/DBvQHNrRGAhw7T9r44C/gYTfg4C/gZcCxN+Bi45XI1sFmSjXsCyFbA4p5xquf9NcCmSTbsCSBbDbRpQ8b7gfe3z82cBvwBOGGkQrefO5t+v9YqSZPC2y7TY2OalYGlSTajfX5jgr4PbJvktUke0L6e1PPsxLhV1Q00H+6vSTIryX40z51Mqqr6I815eA3w0/b2x3XAS2nDR1UtAs4BPtI+LPo44PU0t4mGGvMKoJ8mXKyT5B+A3Qf2J3lmku2TzKIJVncBq4YaS5I0NQwf0+MoYH3gRuA84H8mOlC7GvAcmgdUr6a5lfJRYN37WOMbgXcCNwHb0QSAqXAWcFNVXdnzc2hWgga8CphPM79TgPdV1Q9HGHMvmgdil9AEuy/17HsozbMly2ke3D2L5taLJKkjqarRW0lruL6+vurv75/uMiRpRkmyoKr6Bm935UOSJHXK8HE/luTi9peUDX69ek2qQZK0evHbLvdjVTWWXzR2v69BkrR6ceVDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjpl+JAkSZ0yfEiSpE4ZPiRJUqcMH5IkqVOGD0mS1CnDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkThk+JElSpwwfkiSpU2tPdwHSTHDR4mXMP+TU6S7jzxYesdt0lyBJEzZjVj6SLEzyrDG0qyRbT/AYE+7bpSRfSPKhrvtO8Hjz2/M6aUF3sq5TkjOTvGEyapIkjd2MCR+SJOn+wfChGWMyV08kSdNnxoWPJDsmOTfJ0iTXJDkmyTqDmj0/yZ+S3JjkY0nW6um/X5JLktyc5AdJ5o3z+Osm+XiSK5Ncl+TYJOu3+56R5Kokb09yfVvfvj19109yZJIrkixL8rOevi9McnE7rzOTPKan3+OT/CrJiiQnAesNqukFSS5s+56T5HFj7TvCPEcac2GSdyb5TZJbkpyQ5CFJTm+P86Mkmw4acr8kV7fn5O09Y414PdtbLP+U5I/AH4eo8x+SLEryzPbnYa9vkmcn+X177o8BMso5eFOS/iT9q25dNpbTJkkagxkXPoBVwNuAzYGnALsAbxnU5sVAH/AE4EXAfgBJ9gAOBV4CbAGcDXxtnMf/KLAtsAOwNTAXeG/P/ocCs9vtrwc+3fNB/HHgicBTgc2AdwH3JNm2rePgtq7TgO8lWaf9IP42cGLb5xvASwcOluQJwOeA/YEHAZ8BvtuGpBH7DmekMXuavRR4dnsudgdOpzm3m9P8uTpw0LDPBLYBngMc0vP8zliu5x7ATsDfDqrzuTTn7aVV9ZORrm+SzYFvAe9pj3UZ8PcjnYeqOq6q+qqqb9YGs0dqKkkahxkXPqpqQVWdV1V3V9VCmg/GnQc1+2hVLamqK4GjgFe12/cHPlJVl1TV3cCHgR3GuvqRJMAbgbe1469ox3hlT7O7gA9U1V1VdRqwEnhUu/qyH3BQVS2uqlVVdU5V3QG8Aji1qn5YVXfRhJT1aULKk4EHAEe1Y34TOL/neG8EPlNVv2jH/CJwR9tvtL7DGWnMAf9RVddV1WKaD/lfVNUF7XxOAR4/aMz3V9UtVXUR8HnaazLG6/mR9nzf1rPt5cBxwPOr6pfttpGu7/OB31XVN9tzfBRw7RjOhSRpks24e+jtKsEnaFY2NqCZw4JBzRb1vL8CmNO+nwccneTI3iFpVimuGMPht2iPuaDJIX/uP6unzU3tB9+AW4GNaP61vR7Nv7gHm9N7/Kq6J8mitq5VwOKqqkFzGjAPeF2Sf+7Ztk47Zo3SdzgjjTngup73tw3x80aDxhx8TbaHCV3PAQcDX2rDTG/dw13fOb3jVFW151iS1LEZFz6A/wIuAF5VVSuSHAy8bFCbLYGL2/dbAVe37xcBh1fVVyZ47BtpPli3a//FP96+twOPBH49aN/VtB/G8OcVli2BxTQBYm6S9ISIrfhLiBmY0+GDD5hk51H6DmfYMe+DLYHf99QwcE3Gcj2Lv/Zy4IQki6vqqEF1/9X1TbJNW8PAz+n9eTTbz51Nv79bQ5ImxYy77QJsDCwHViZ5NPDmIdq8M8mmSbYEDgJOarcfC/xLku0AksxO8vKxHriq7gGOBz6Z5MHtGHPbZw/G0vdzwCeSzEkyK8lT2ucoTgZ2S7JLkgcAb6e5zXEOcC5wN3BgkrWTvATYsWfo44EDkuyUxoZJdkuy8Rj6DmekMSfq35Js0J77ffnLNRnL9RzK1TTPhxyYZOAZkZGu76nAdklekuZbMwfSPJ8jSerYTAwf7wD2AlbQfEieNESb79As3V9I86FzAkBVnULzwOjXkywHfgvsOs7jvxu4FDivHeNHwKPGUftFNM9dLGlrWauq/gC8BvgPmhWS3YHdq+rOqrqT5gHKfYCbaZ4P+e+BAauqn+YZjWPa/Ze2bRmt73BGGvM+OKsd53+Bj1fVGe32sVzP4eq8kiaAvDvJG0a6vlV1I81qyRHATTQPv/78Ps5JkjQBuffjAJKG0tfXV/39/dNdhiTNKEkWVFXf4O0zceVDkiTNYIaPIaT5ZV8rh3i9erprmyxJDh1mjqdPd22SpPu3mfhtlylXVdtNdw1Trao+TPN7MCRJ6pQrH5IkqVOGD0mS1CnDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkThk+JElSpwwfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjpl+NCMkuRRSS5IsiLJgdNdjyRp/Nae7gKkcXoXcGZVPb7Lg160eBnzDzm1y0P+2cIjdpuW40rSVHHlQzPNPODi8XZKYtCWpNWE4UMzRpIfA88EjkmyMslB7S2Y5UkWJTmsp+38JJXk9UmuBH7cbt8vySVJbk7ygyTzpmc2krTmMnxoxqiqfwTOBt5aVRsBvwb2BjYBdgPenGSPQd12Bh4DPLfddyjwEmCLdqyvdVG7JOkvDB+asarqzKq6qKruqarf0ASJnQc1O6yqbqmq24D9gY9U1SVVdTfwYWCH4VY/krwpSX+S/lW3LpvSuUjSmsTwoRkryU5JfpLkhiTLgAOAzQc1W9Tzfh5wdJKlSZYCS4AAc4cav6qOq6q+quqbtcHsKZiBJK2ZDB+ayb4KfBfYsqpmA8fShIle1fN+EbB/VW3S81q/qs7pqF5JEn7VVjPbxsCSqro9yY7AXsAZI7Q/Fvhgkgur6uIks4HnVNU3RjvQ9nNn0+9XXiVpUrjyoZnsLcAHkqwA3gucPFLjqjoF+Cjw9STLgd8Cu055lZKke0lVjd5KWsP19fVVf3//dJchSTNKkgVV1Td4uysfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjpl+JAkSZ0yfEiSpE4ZPiRJUqcMH5IkqVOGD0mS1CnDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkThk+JElSpwwfkiSpU4YPSZLUqbWnuwBpJrho8TLmH3JqZ8dbeMRunR1LkrrmyockSeqU4UOSJHXK8KEZKckhSS5LsiLJ75K8uN0+K8mRSW5McnmStyapJGu3+2cnOSHJNUkWJ/lQklnTOxtJWrP4zIdmqsuApwHXAi8Hvpxka+BFwK7ADsAtwDcG9fsicB2wNbAh8H1gEfCZwQdI8ibgTQCzHrjFVMxBktZIrnxoRqqqb1TV1VV1T1WdBPwR2BHYEzi6qq6qqpuBIwb6JHkITTA5uKpuqarrgU8CrxzmGMdVVV9V9c3aYPaUz0mS1hSufGhGSrI38P+A+e2mjYDNgTk0KxkDet/PAx4AXJNkYNtag9pIkqaY4UMzTpJ5wPHALsC5VbUqyYVAgGuAh/c037Ln/SLgDmDzqrq7o3IlSYMYPjQTbQgUcANAkn2Bx7b7TgYOSnIqzTMf7x7oVFXXJDkDODLJvwErgUcAD6+qs0Y64PZzZ9Pv796QpEnhMx+acarqd8CRwLk0D49uD/y83X08cAbwG+AC4DTgbmBVu39vYB3gd8DNwDeBh3VVuyQJUlXTXYM0ZZLsChxbVfPuyzh9fX3V398/SVVJ0pohyYKq6hu83ZUP3a8kWT/J85OsnWQu8D7glOmuS5L0F4YP3d8EeD/NLZULgEuA905rRZKke/GBU92vVNWtwJOmuw5J0vBc+ZAkSZ0yfEiSpE4ZPiRJUqcMH5IkqVOGD0mS1CnDhyRJ6pThQ5IkdcrwIUmSOmX4kCRJnTJ8SJKkThk+JElSpwwfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8KFJk+TiJM+YgnG/kORDkz2uJGl6rD3dBej+o6q2m+4aJEmrP1c+JElSpwwfmjRJFiZ5VpIdk/QnWZ7kuiSfGEPfbyS5NsmyJD9NMuwqSpI3Jrk0yZIk300yp2dfJTkgyR+T3Jzk00nSs3+/JJe0+36QZN4Ix3lTO4/+G264YTynQpI0AsOHpsLRwNFV9UDgkcDJY+hzOrAN8GDgV8BXhmqU5B+BjwB7Ag8DrgC+PqjZC4AnAX/Xtntu23cP4FDgJcAWwNnA14YrqKqOq6q+qurbYostxjAFSdJYGD40Fe4Ctk6yeVWtrKrzRutQVZ+rqhVVdQdwGPB3SWYP0fTVwOeq6ldt238BnpJkfk+bI6pqaVVdCfwE2KHdvj/wkaq6pKruBj4M7DDS6ockafIZPjQVXg9sC/w+yflJXjBS4ySzkhyR5LIky4GF7a7Nh2g+h2a1A4CqWgncBMztaXNtz/tbgY3a9/OAo5MsTbIUWAJkUF9J0hTz2y6adFX1R+BVSdaiucXxzSQPqqpbhumyF/Ai4Fk0wWM2cDNNMBjsapoQAUCSDYEHAYvHUNoi4PCqGvKWjiSpG658aNIleU2SLarqHmBpu3nVCF02Bu6gWcHYgOZ2yHC+CuybZIck67Ztf1FVC8dQ2rHAvww8zJpkdpKXj6GfJGkSGT40FZ4HXJxkJc3Dp6+sqttHaP8lmlspi4HfAcM+I1JV/wv8G/At4BqaB1pfOZaiquoU4KPA19vbO78Fdh1LX0nS5ElVTXcN0mqvr6+v+vv7p7sMSZpRkiyoqr7B2135kCRJnTJ8qBNJXp1k5RCvi6e7NklSt/y2izrRfsPEb5lIklz5kCRJ3TJ8SJKkThk+JElSpwwfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjpl+JAkSZ0yfEiSpE4ZPiRJUqcMH5IkqVOGD0mS1CnDhyRJ6pThQ5IkdcrwoRElWZjkWdNdx3CS7JPkZyPsPz3J67qsSZI0srWnuwBpKlXVrtNdgyTp3lz5kCRJnTJ8aCx2SPKbJMuSnJRkvSSbJvl+khuS3Ny+f/hAh/Z2yJ+SrEhyeZJXj3aQJG9Mcknb53dJntBuPyTJZT3bX/zXXfMfbX2/T7JLz44zk7yhp6afJfl4W/PlSYZdGUnypiT9SfpvuOGGcZ80SdLQDB8aiz2B5wGPAB4H7EPzZ+fzwDxgK+A24BiAJBsCnwJ2raqNgacCF450gCQvBw4D9gYeCLwQuKndfRnwNGA28H7gy0ke1tN9J+BPwObA+4D/TrLZMIfaCfhD2/bfgROSZKiGVXVcVfVVVd8WW2wxUvmSpHEwfGgsPlVVV1fVEuB7wA5VdVNVfauqbq2qFcDhwM49fe4BHptk/aq6pqouHuUYbwD+varOr8alVXUFQFV9oz3+PVV1EvBHYMeevtcDR1XVXe3+PwC7DXOcK6rq+KpaBXwReBjwkPGdDknSfWH40Fhc2/P+VmCjJBsk+UySK5IsB34KbJJkVlXdArwCOAC4JsmpSR49yjG2pFnh+CtJ9k5yYZKlSZYCj6VZuRiwuKqq5+crgDmjzaWqbm3fbjRKbZKkSWT40ES9HXgUsFNVPRB4ers9AFX1g6p6Ns3Kwu+B40cZbxHwyMEbk8xr+74VeFBVbQL8duA4rbmDbp1sBVw93glJkrph+NBEbUzznMfS9vmK9w3sSPKQJC9sn/24A1gJrBplvM8C70jyxDS2boPHhkABN7Rj70uz8tHrwcCBSR7QPjvyGOC0+z5FSdJUMHxooo4C1gduBM4D/qdn31o0KyNXA0tongV5y0iDVdU3aJ4b+SqwAvg2sFlV/Q44EjgXuA7YHvj5oO6/ALZpazkceFlV3YQkabWUe98qlzSUvr6+6u/vn+4yJGlGSbKgqvoGb3flQ5Ikdcrwoc4kOTbJyiFex053bZKk7vjfdlFnquoAmq/fSpLWYK58SJKkThk+JElSpwwfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmdMnxIkqROGT4kSVKnDB+SJKlThg9JktQpw4ckSeqU4UOSJHXK8CFJkjqVqpruGqTVXpIVwB+mu45Jsjlw43QXMYmcz+rN+ay+upjLvKraYvDGtaf4oNL9xR+qqm+6i5gMSfrvL3MB57O6cz6rr+mci7ddJElSpwwfkiSpU4YPaWyOm+4CJtH9aS7gfFZ3zmf1NW1z8YFTSZLUKVc+JElSpwwfkiSpU4YPrZGSbJbklCS3JLkiyV4jtH1bkmuTLEvyuSTrTmScqTSJ8zkzye1JVravafndJmOdT5LHJvlBkhuT/NU95NXh+kziXGbatXldkgVJlie5Ksm/J1l7vONMtUmcz0y7Pq9M8of274Hrk3wxyQPHO85EGT60pvo0cCfwEODVwH8l2W5woyTPBQ4BdgHmA38DvH+843RgsuYD8Naq2qh9PWpKqx7eWM/rXcDJwOvv4zhTabLmAjPr2mwAHEzzi6x2ovkz944JjDPVJms+MLOuz8+Bv6+q2TR/D6wNfGgC40xMVfnytUa9gA3b/1Nt27PtROCIIdp+Ffhwz8+7ANeOd5yZMJ/25zOBN8yU69Ozf+vmr7P7Ns7qOpeZfG162v0/4Hury7WZzPnM9OsDbAR8CTitq+vjyofWRNsCq6rq/3q2/RoYKtVv1+7rbfeQJA8a5zhTabLmM+Aj7dL/z5M8Y7KLHYPJOq+rw/WZ7Bpm8rV5OnDxJIwzmSZrPgNm1PVJ8g9JlgErgJcCR01knIkwfGhNtBGwbNC2ZcDGY2g78H7jcY4zlSZrPgDvplmCnUvzOwC+l+SRk1fqmEzWeV0drs9k1jBjr02SfYE+4OP3ZZwpMFnzgRl4farqZ9Xcdnk48DFg4UTGmQjDh9ZEK4EHDtr2QJr0P1rbgfcrxjnOVJqs+VBVv6iqFVV1R1V9kea+8PMnud7RTNZ5XR2uz6TVMFOvTZI9gCOAXatq4D9itjpcmwnVMcx8Zuz1AaiqxcD/AF+/L+OMh+FDa6L/A9ZOsk3Ptr/jr5dQabf93aB211XVTeMcZypN1nyGUkAmpcqxm6zzujpcn6msYbW/NkmeBxwP7F5VF010nCk0WfMZymp/fQZZGxhYqZn66zOdD8f48jVdL5qE/zWaB6v+nmZJcbsh2j0PuBb4W2BT4Mf0PHQ11nFmwnyATYDnAuvR/EX0auAW4FGr8XzS1vu3NH/Zrwesuzpdn8mYywy9Nv8I3AQ8/b6MMxPmM0Ovz6uBrdo/d/OAs4D/7ur6dHpSfPlaXV7AZsC3278grgT2ardvRbPkuFVP2/8HXAcsBz4/6MNtyHFm4nyALYDzaZZWlwLnAc9enedD83XhGvRauDpdn8mYywy9Nj8B7m63DbxOX52uzWTNZ4Zen8OBq9p2V9E8p/Kgrq6P/20XSZLUKZ/5kCRJnTJ8SJKkThk+JElSpwwfkiSpU4YPSZLUKcOHJEnqlOFDkiR1yvAhSZI6ZfiQJEmd+v+hE+TYKKVG9AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(6, 9))\n", "\n", "ind = np.argsort(xgb_model.feature_importances_)[::-1]\n", "features_sorted = np.array(features)[ind]\n", "importances_sorted = xgb_model.feature_importances_[ind]\n", "\n", "plt.barh(y=range(len(features)), width=importances_sorted, height=0.2)\n", "plt.title('Gain')\n", "plt.yticks(ticks=range(len(features)), labels=features_sorted)\n", "plt.gca().invert_yaxis()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Modeling (part 2): Linear models & Ensembles\n", "\n", "Given the randomness of the _Titanic dataset_ , we can be satisfied with the performance of `xgboost` model above. Still, it is always usefull to try a variety of models and approaches, especially since `vaex` makes makes this process rather simple. \n", "\n", "In the following part we will use a couple of linear models as our predictors, this time straight from `scikit-learn`. This requires us to pre-process the data in a slightly different way.\n", "\n", "### Feature pre-processing for linear models\n", "\n", "When using linear models, the safest option is to encode categorical variables with the one-hot encoding scheme, especially if they have low cardinality. We will do this for the \"family_size\" and \"deck\" features. Note that the \"sex\" feature is already encoded since it has only unique values options. \n", "\n", "The \"name_title\" feature is a bit more tricky. Since in its original form it has some values that only appear a couple of times, we will do a trick: we will one-hot encode the frequency encoded values. This will reduce cardinality of the feature, while also preserving the most important, i.e. most common values.\n", "\n", "Regarding the \"age\" and \"fare\", to add some variance in the model, we will not convert them to categorical as before, but simply remove their mean and standard-deviations (standard-scaling). We will do the same to the \"fare_per_family_member\" feature.\n", "\n", "\n", "Finally, we will drop out any other features." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:41.979030Z", "start_time": "2020-05-01T17:12:41.922481Z" } }, "outputs": [], "source": [ "# One-hot encode categorical features\n", "one_hot = vaex.ml.OneHotEncoder(features=['deck', 'family_size', 'name_title'])\n", "df_train = one_hot.fit_transform(df_train)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:42.072684Z", "start_time": "2020-05-01T17:12:41.988593Z" } }, "outputs": [], "source": [ "# Standard scale numerical features\n", "standard_scaler = vaex.ml.StandardScaler(features=['age', 'fare', 'fare_per_family_member'])\n", "df_train = standard_scaler.fit_transform(df_train)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:42.088401Z", "start_time": "2020-05-01T17:12:42.076102Z" } }, "outputs": [ { "data": { "text/plain": [ "['deck_A',\n", " 'deck_B',\n", " 'deck_C',\n", " 'deck_D',\n", " 'deck_E',\n", " 'deck_F',\n", " 'deck_G',\n", " 'deck_M',\n", " 'family_size_1',\n", " 'family_size_2',\n", " 'family_size_3',\n", " 'family_size_4',\n", " 'family_size_5',\n", " 'family_size_6',\n", " 'family_size_7',\n", " 'family_size_8',\n", " 'family_size_11',\n", " 'standard_scaled_age',\n", " 'standard_scaled_fare',\n", " 'standard_scaled_fare_per_family_member',\n", " 'label_encoded_sex']" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Get the features for training a linear model\n", "features_linear = df_train.get_column_names(regex='^deck_|^family_size_|^frequency_encoded_name_title_')\n", "features_linear += df_train.get_column_names(regex='^standard_scaled_')\n", "features_linear += ['label_encoded_sex']\n", "features_linear" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Estimators: `SVC` and `LogisticRegression`" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:42.170145Z", "start_time": "2020-05-01T17:12:42.095159Z" } }, "outputs": [], "source": [ "from sklearn.svm import SVC\n", "from sklearn.linear_model import LogisticRegression" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:42.646357Z", "start_time": "2020-05-01T17:12:42.172042Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/jovan/miniconda3/lib/python3.7/site-packages/sklearn/svm/_base.py:258: ConvergenceWarning: Solver terminated early (max_iter=1000). Consider pre-processing your data with StandardScaler or MinMaxScaler.\n", " % self.max_iter, ConvergenceWarning)\n" ] }, { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
# pclasssurvived name sex age sibsp parchticket farecabin embarked boat bodyhome_dest name_title name_num_wordsdeck multi_cabin has_cabin family_size is_alone age_times_class fare_per_family_member label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title prediction_xgb deck_A deck_B deck_C deck_D deck_E deck_F deck_G deck_M family_size_1 family_size_2 family_size_3 family_size_4 family_size_5 family_size_6 family_size_7 family_size_8 family_size_11 name_title_Capt name_title_Col name_title_Countess name_title_Don name_title_Dona name_title_Dr name_title_Jonkheer name_title_Lady name_title_Major name_title_Master name_title_Miss name_title_Mlle name_title_Mme name_title_Mr name_title_Mrs name_title_Ms name_title_Rev standard_scaled_age standard_scaled_fare standard_scaled_fare_per_family_memberprediction_svc prediction_lr
0 3False Stoytcheff, Mr. Ilia male 19 0 0349205 7.8958M S -- nan-- Mr 3M 0 1 1 0 57 7.8958 1 1 0 0.578797 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.807704 -0.493719 -0.342804False False
1 1False Payne, Mr. Vivian Ponsonby male 23 0 012749 93.5 B24 S -- nanMontreal, PQ Mr 4B 0 1 1 0 23 93.5 1 1 1 0.578797 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.492921 1.19613 1.99718 False True
2 3True Abbott, Mrs. Stanton (Rosa Hunt)female 35 1 1C.A. 267320.25 M S A nanEast Providence, RI Mrs 5M 0 1 3 0 105 6.75 0 1 0 0.145177 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.45143 -0.249845 -0.374124True True
3 2True Hocking, Miss. Ellen "Nellie" female 20 2 129105 23 M S 4 nanCornwall / Akron, OHMiss 4M 0 1 4 0 40 5.75 0 1 0 0.201528 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0.729008 -0.195559 -0.401459True True
4 3False Nilsson, Mr. August Ferdinand male 21 0 0350410 7.8542M S -- nan-- Mr 4M 0 1 1 0 63 7.8542 1 1 0 0.578797 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.650312 -0.494541 -0.343941False False
" ], "text/plain": [ " # pclass survived name sex age sibsp parch ticket fare cabin embarked boat body home_dest name_title name_num_words deck multi_cabin has_cabin family_size is_alone age_times_class fare_per_family_member label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title prediction_xgb deck_A deck_B deck_C deck_D deck_E deck_F deck_G deck_M family_size_1 family_size_2 family_size_3 family_size_4 family_size_5 family_size_6 family_size_7 family_size_8 family_size_11 name_title_Capt name_title_Col name_title_Countess name_title_Don name_title_Dona name_title_Dr name_title_Jonkheer name_title_Lady name_title_Major name_title_Master name_title_Miss name_title_Mlle name_title_Mme name_title_Mr name_title_Mrs name_title_Ms name_title_Rev standard_scaled_age standard_scaled_fare standard_scaled_fare_per_family_member prediction_svc prediction_lr\n", " 0 3 False Stoytcheff, Mr. Ilia male 19 0 0 349205 7.8958 M S -- nan -- Mr 3 M 0 1 1 0 57 7.8958 1 1 0 0.578797 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.807704 -0.493719 -0.342804 False False\n", " 1 1 False Payne, Mr. Vivian Ponsonby male 23 0 0 12749 93.5 B24 S -- nan Montreal, PQ Mr 4 B 0 1 1 0 23 93.5 1 1 1 0.578797 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.492921 1.19613 1.99718 False True\n", " 2 3 True Abbott, Mrs. Stanton (Rosa Hunt) female 35 1 1 C.A. 2673 20.25 M S A nan East Providence, RI Mrs 5 M 0 1 3 0 105 6.75 0 1 0 0.145177 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.45143 -0.249845 -0.374124 True True\n", " 3 2 True Hocking, Miss. Ellen \"Nellie\" female 20 2 1 29105 23 M S 4 nan Cornwall / Akron, OH Miss 4 M 0 1 4 0 40 5.75 0 1 0 0.201528 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0.729008 -0.195559 -0.401459 True True\n", " 4 3 False Nilsson, Mr. August Ferdinand male 21 0 0 350410 7.8542 M S -- nan -- Mr 4 M 0 1 1 0 63 7.8542 1 1 0 0.578797 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.650312 -0.494541 -0.343941 False False" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# The Support Vector Classifier\n", "vaex_svc = vaex.ml.sklearn.Predictor(features=features_linear, \n", " target='survived',\n", " model=SVC(max_iter=1000, random_state=42),\n", " prediction_name='prediction_svc')\n", "\n", "# Logistic Regression\n", "vaex_logistic = vaex.ml.sklearn.Predictor(features=features_linear, \n", " target='survived',\n", " model=LogisticRegression(max_iter=1000, random_state=42),\n", " prediction_name='prediction_lr')\n", "\n", "# Train the new models and apply the transformation to the train dataframe\n", "for model in [vaex_svc, vaex_logistic]:\n", " model.fit(df_train)\n", " df_train = model.transform(df_train)\n", " \n", "# Preview of the train DataFrame\n", "df_train.head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ensemble\n", "\n", "Just as before, the predictions from the `SVC` and the `LogisticRegression` classifiers are added as virtual columns in the training dataset. This is quite powerful, since now we can easily use them to create an ensemble! For example, let's do a weighted mean." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:42.958447Z", "start_time": "2020-05-01T17:12:42.653715Z" } }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
# prediction_xgb prediction_svc prediction_lr prediction_final
0 0 False False False
1 0 False True False
2 1 True True True
3 1 True True True
4 0 False False False
... ... ... ... ...
1,0420 False False False
1,0430 True True True
1,0441 True False True
1,0450 True True True
1,0460 False False False
" ], "text/plain": [ "# prediction_xgb prediction_svc prediction_lr prediction_final\n", "0 0 False False False\n", "1 0 False True False\n", "2 1 True True True\n", "3 1 True True True\n", "4 0 False False False\n", "... ... ... ... ...\n", "1,042 0 False False False\n", "1,043 0 True True True\n", "1,044 1 True False True\n", "1,045 0 True True True\n", "1,046 0 False False False" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Weighed mean of the classes\n", "prediction_final = (df_train.prediction_xgb.astype('int') * 0.3 + \n", " df_train.prediction_svc.astype('int') * 0.5 + \n", " df_train.prediction_xgb.astype('int') * 0.2)\n", "# Get the predicted class\n", "prediction_final = (prediction_final >= 0.5)\n", "# Add the expression to the train DataFrame\n", "df_train['prediction_final'] = prediction_final\n", "\n", "# Preview\n", "df_train[df_train.get_column_names(regex='^predict')]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Performance (part 2)\n", "\n", "Applying the ensembler to the test set is just as easy as before. We just need to get the new state of the training DataFrame, and transfer it to the test DataFrame." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:43.334411Z", "start_time": "2020-05-01T17:12:42.961373Z" } }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
# pclasssurvived name sex age sibsp parchticket farecabin embarked boat bodyhome_dest name_title name_num_wordsdeck multi_cabin has_cabin family_size is_alone age_times_class fare_per_family_member label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title prediction_xgb deck_A deck_B deck_C deck_D deck_E deck_F deck_G deck_M family_size_1 family_size_2 family_size_3 family_size_4 family_size_5 family_size_6 family_size_7 family_size_8 family_size_11 name_title_Capt name_title_Col name_title_Countess name_title_Don name_title_Dona name_title_Dr name_title_Jonkheer name_title_Lady name_title_Major name_title_Master name_title_Miss name_title_Mlle name_title_Mme name_title_Mr name_title_Mrs name_title_Ms name_title_Rev standard_scaled_age standard_scaled_fare standard_scaled_fare_per_family_memberprediction_svc prediction_lr prediction_final
0 3False O'Connor, Mr. Patrick male 28.032 0 0366713 7.75 M Q -- nan-- Mr 3M 0 1 1 0 84.096 7.75 1 2 0 0.578797 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.096924 -0.496597 -0.346789False False False
1 3False Canavan, Mr. Patrick male 21 0 0364858 7.75 M Q -- nanIreland Philadelphia, PAMr 3M 0 1 1 0 63 7.75 1 2 0 0.578797 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.650312 -0.496597 -0.346789False False False
2 1False Ovies y Rodriguez, Mr. Servando male 28.5 0 0PC 17562 27.7208D43 C -- 189?Havana, Cuba Mr 5D 0 1 1 0 28.5 27.7208 1 0 4 0.578797 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.0600935 -0.102369 0.19911 False False True
3 3False Windelov, Mr. Einar male 21 0 0SOTON/OQ 3101317 7.25 M S -- nan-- Mr 3M 0 1 1 0 63 7.25 1 1 0 0.578797 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.650312 -0.506468 -0.360456False False False
4 2True Shelley, Mrs. William (Imanita Parrish Hall)female25 0 1230433 26 M S 12 nanDeer Lodge, MT Mrs 6M 0 1 2 0 50 13 0 1 0 0.145177 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0.335529 -0.136338 -0.203281True True True
" ], "text/plain": [ " # pclass survived name sex age sibsp parch ticket fare cabin embarked boat body home_dest name_title name_num_words deck multi_cabin has_cabin family_size is_alone age_times_class fare_per_family_member label_encoded_sex label_encoded_embarked label_encoded_deck frequency_encoded_name_title prediction_xgb deck_A deck_B deck_C deck_D deck_E deck_F deck_G deck_M family_size_1 family_size_2 family_size_3 family_size_4 family_size_5 family_size_6 family_size_7 family_size_8 family_size_11 name_title_Capt name_title_Col name_title_Countess name_title_Don name_title_Dona name_title_Dr name_title_Jonkheer name_title_Lady name_title_Major name_title_Master name_title_Miss name_title_Mlle name_title_Mme name_title_Mr name_title_Mrs name_title_Ms name_title_Rev standard_scaled_age standard_scaled_fare standard_scaled_fare_per_family_member prediction_svc prediction_lr prediction_final\n", " 0 3 False O'Connor, Mr. Patrick male 28.032 0 0 366713 7.75 M Q -- nan -- Mr 3 M 0 1 1 0 84.096 7.75 1 2 0 0.578797 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.096924 -0.496597 -0.346789 False False False\n", " 1 3 False Canavan, Mr. Patrick male 21 0 0 364858 7.75 M Q -- nan Ireland Philadelphia, PA Mr 3 M 0 1 1 0 63 7.75 1 2 0 0.578797 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.650312 -0.496597 -0.346789 False False False\n", " 2 1 False Ovies y Rodriguez, Mr. Servando male 28.5 0 0 PC 17562 27.7208 D43 C -- 189 ?Havana, Cuba Mr 5 D 0 1 1 0 28.5 27.7208 1 0 4 0.578797 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.0600935 -0.102369 0.19911 False False True\n", " 3 3 False Windelov, Mr. Einar male 21 0 0 SOTON/OQ 3101317 7.25 M S -- nan -- Mr 3 M 0 1 1 0 63 7.25 1 1 0 0.578797 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0.650312 -0.506468 -0.360456 False False False\n", " 4 2 True Shelley, Mrs. William (Imanita Parrish Hall) female 25 0 1 230433 26 M S 12 nan Deer Lodge, MT Mrs 6 M 0 1 2 0 50 13 0 1 0 0.145177 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0.335529 -0.136338 -0.203281 True True True" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# State transfer\n", "state_new = df_train.state_get()\n", "df_test.state_set(state_new)\n", "\n", "# Preview\n", "df_test.head(5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, let's check the performance of all the individual models as well as on the ensembler, on the test set." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "ExecuteTime": { "end_time": "2020-05-01T17:12:43.490196Z", "start_time": "2020-05-01T17:12:43.337368Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "prediction_xgb\n", "Accuracy: 0.786\n", "f1 score: 0.728\n", "roc-auc: 0.773\n", " \n", "prediction_svc\n", "Accuracy: 0.802\n", "f1 score: 0.743\n", "roc-auc: 0.786\n", " \n", "prediction_lr\n", "Accuracy: 0.779\n", "f1 score: 0.713\n", "roc-auc: 0.762\n", " \n", "prediction_final\n", "Accuracy: 0.809\n", "f1 score: 0.771\n", "roc-auc: 0.804\n", " \n" ] } ], "source": [ "pred_columns = df_train.get_column_names(regex='^prediction_')\n", "for i in pred_columns:\n", " print(i)\n", " binary_metrics(y_true=df_test.survived.values, y_pred=df_test[i].values)\n", " print(' ')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that our ensembler is doing a better job than any idividual model, as expected.\n", "\n", "Thanks you for going over this example. Feel free to copy, modify, and in general play around with this notebook." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.8" } }, "nbformat": 4, "nbformat_minor": 2 }